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Network representation of a phenomenon

Some phenomena/data can be represented as entities 
(“nodes”/”vertices”) linked by relationships (“edges”)

Node – Generic entity, physical or not.
(gene, protein, metabolite, cellular state, disease, …)
It can have associated features (quantitative or qualitative)

Edge – Generic relationship, in the broadest sense.
(interaction (physical or functional), transcriptional control,
chemical transformation (reaction), …)
It can have associated features (quantitative or qualitative): 
weight, direction, ..

Network



•Gavin, A.C., et al. (2002) Functional organisation of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141-147.

Large networks
Network theory / Graph theory

Once a given phenomenon is 
modelled as a large network, it can 
be studied using mathematical 
approaches (Graph Theory) in 
order to extract information hidden 
in its structure and topological 
patterns



Networks 
Networks have been used to 
model phenomena in all 
scientific disciplines

Conections between computers
(tecnological network)

Sexual contacts
(social network)

Predator-prey relationships
(food web)
(biological/ecological network)

M. E. J. Newman. (2003). The Structure and Function of Complex Networks. SIAM Review. 45:2, 167-256 

Relationships between banks
(economic network)

Co-mentioning of 
characters in a novel
(literature network)



Biological networks

P McGillivray, D Clarke, W Meyerson, J Zhang, D Lee, M Gu, S Kumar, H Zhou, MB Gerstein (2018). Network Analysis as a Grand Unifier in 
Biomedical Data Science. Annual Review of Biomedical Data Science Vol. 1. 153-180

In Biology, networks have 
been used to model diverse 
phenomena at all biological 
levels 



Molecular networks
Network approaches have been applied to the study of molecular phenomena as the data 
required to assemble these networks became available (-omics techniques).



Metabolomics 

Proteomics 

Transcriptomics

Genomics 

-omics and molecular networks in the context of the Central Dogma

Phenomics 

Gene regulation nets.

Protein nets. (interaction, fosforilation, …)

Metabolic nets.

Genetic nets, phenotipic nets,
disease-related nets, …



Systems biology is the study of biological systems whose 
behaviour cannot be reduced to the linear sum of their parts’. It is 
a biology-based interdisciplinary field of study that focuses on 
complex interactions within biological systems, using a holistic 
approach (holism instead of the more traditional reductionism) to 
biological research.

(nature.com, Wikipedia)

Systems Biology



Biological systems are a prototype of complex systems: systems
characterized by a large number of components interacting non-linearly. They
can not be (fully) modelled by first principles: a minimum difference in de
details leads to a totally different outcome.

Is the reductionist approach of molecular biology enough?

The main idea behind complex systems is that the ensemble behaves in ways not
predicted by its components. The interactions matter more than the nature of the
units.
Studying individual ants will almost never give us a clear indication of how the ant colony
operates. For that, one needs to understand an ant colony as an ant colony, no less, no
more, not a collection of ants. This is called an “emergent” property of the whole, by
which parts and whole differ because what matters are the interactions between such
parts. And interactions can obey very simple rules.

N. N. Taleb. 
Skin in the game - Hidden asymmetries in daily life.

“The whole is more than the sum of the parts”







Reductionist vs. systemic approaches in other scientific areas



• A graph is a mathematical object used to represent entities 
and relationships between them (understanding entity and 
relationship in the broadest possible way)

• Formally,  graph G is a pair of sets (V,E)

– V={v1,v2,....vn} is the set of vertices/nodes
– E={(vi,vj),(vi’,vj’)......} is a set of edges (pairs formed by the 

elements in V). 

– The number of nodes is called order of the graph.
– The number of edges is called size of the graph.

Graph



v1

v2

v3

v4

v5

v6

v7

v8

V={v1,v2,v3,v4,v5,v6,v7,v8}

E={(v1,v2),(v1,v3),(v2,v4),(v3,v5),(v4,v6),
(v5,v7),(v6,v8),(v7,v8),(v2,v5),(v4,v5),(v6,v7)}

Example of a graph (order: 8 , size: 11).

Graph

C. Aguirre (UAM)



An hyperedge is an edge connecting 
more (or less) than two nodes. Graphs 
with hyperedges are called hypergraphs

V1

V2
V3

V4V5

V6

V7

e1

e2

e3

e4

V={v1,v2,v3,v4,v5,v6,v7}

E={e1,e2,e3,e4}  
={ {v1,v2,v3}, {v2,v3}, {v5}, {v3,v6,v7} }

Hypergraph



v1

v2

v3

v4

v5

v6

v7

v8

A directed graph (or digraph) is a graph in which de edges have 
directionality:    (vi,vj) ≠ (vj,vi)

Directed graph
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A weighted graph is a graph in which the edges have associated numerical 
values (to quantify some characteristic of the relationship (importance, 
distance, capacity …)
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A weighted directed graph…

Weighted graph



C={v1,v2,v5,v4,v6,v7,v8}
k=6

A path is a alternating sequence of nodes and edges connected in the network in 
which all nodes (and consequently all edges) are distinct. 

C={v1,v2,v4,v6,v8}
k=4

The shortest path between two nodes…

v1

v2

v3

v4

v5

v6

v7

v
8

v4

v1

v2

v3 v5

v6

v7

v
8

Path

Distance between two nodes 
= length of shortest path 
connecting them

Distance(v1,v8)= 4

A closed path (aka cycle) is a closed sequence of nodes and edges in which 
all nodes (and consequently all edges) are distinct. 



Densely connected subgraphs = Subgraphs with many internal connections and 
few connections to the rest of the graph.

Clusters/modules/communities

Two modules

8 modules



Signal diffusion in networks – aka “network propagation”

Random walks Heat diffusion

Detect the network regions “affected” by a set of nodes by propagating a signal from them. 
Examples:

Simulates a set of n walkers falling in the node(s) of 
interest and moving m steps randomly following the 
network edges

Five eight-step random walks 
from a central point in a 2D 
regular graph. Some paths 
appear shorter than eight 
steps where the route has 
doubled back on itself. 
(Wikipedia)

Three 4-step random walkers starting 
at the central node of right cluster

Simulates that the node(s) of interest are heat 
sources and the network edges wires able to 
transmit it.

HEAT

Graph Kernels
Mathematical operations with matrix representations of graphs 
that end up in a vector/matrix with the signal associated to each 
node and/or measures of “network distance” between nodes.



Main graph metrics

These metrics summarize the main topological features of graphs and can be used to 
classify them.

• Size |E| and order |V|
• Dispersion (|E|/|V|)
• Degree distribution: k vs. p(k)
• Average degree (<k>)
• Clustering coefficient (C)
• Average/characteristic path length (L)

The characteristic path length is the average of the lengths of the shortest 
paths (distances) between all nodes L = <dij>

• Diameter (D) 
The diameter of a graph is the maximum path length. D = max(dij)

Global (graph) metrics

Local (node/edge) metrics
• Degree: ki
• Clustering coeficient: Ci=2ꞏn/(k2-k)
• Betweenness (node or edge): Bi= number of shortests paths using node/edge “i”.
• Closeness: Ci=1/dik
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Degree (v2) = 3
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in-degree (v2) = 2
Out-degree(v2) = 1
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Degree (v2) = 15

Node degree

regular graph: degree(i)=degree(j)  i,j 



vB(V) = 9     absolute   or…
= 9/N relative to the number

of shortest paths 
N: #shortest paths 

= #node pairs
= (7^2-7)/2

Node/Edge betweenness-centrality
And closeness-centrality

Betweenness-centrality: Number (or fraction) of shortest-paths passing 
through that node/edge

Closeness-centrality: Inverse of the sum of distances to all other 
nodes/edges

(graph above)
C(V) = 1/(1+2+2+1+2+2) = 1/10

High B

Low B

High C

Low C

Not the same as “degree”

Tries to quantify the importance of a node/edge for the “transfer of information” between 
different parts of the network. Points to “bottlenecks”, “bridges” in the network.

Points to central nodes close to most nodes in the network.



Clustering coefficient
The clustering coefficient of a node is the probability of finding a connection between its connected nodes 
(neighbors). 

It is calculated as the number of connections between its neighbors (n) over the maximum number of 
possible connections between them.

Ci = n / (ki*(ki-1)/2) (being ki the degree of the node = number of neighbors)

It gives an idea how clustered or sparse is the neighborhood of a node.

i i i i

Ci=3/3 =1.0 Ci= 2/3 =0.67 Ci= 1/3 =0.33 Ci= 0/3 =0.0

The clustering coefficient of a graph is the average of the clustering coefficients of all its nodes. 
It gives an idea of how clustered/interconnected  a graph is (vs. “star-like” graphs and trees)

C = <Ci>



Barabasi, A.L. and Oltvai, Z.N. (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet, 5, 101-113.

Global metrics - Degree distribution



Main graph types

Random graphs
Generation: assign E edges randomly, from the (N2-N)/2 possible. Equivalent to 
create each edge with probability p=E/(N2-N)/2
Degree distribution: poison.

Regular graphs
Degree distribution: single value k.
Mathematical “curiosities”. There are analytic expressions for all the metrics.
For small k (disperse graphs), C~0.75 (high) and L ~ N/k

Scale-free graphs
Arise from various possible generation mechanisms:

– Preferential attachment: add nodes to an existing network 
connecting them PREFERENTIALLY to already highly 
connected nodes (“rich gets richer”, …)

– Node duplication preserving links (biological networks)
Characterized by “hubs” (highly connected nodes, in 
low number)
“Small world” in some cases (hubs act as shortcuts). 
Degree distribution: power-law: p(k) = Cꞏk
 characterizes the connectivity pattern of the network 
(proportion of hubs) and in real networks it ranges ~ 2.0 
– 3.0
Adequately represent a number of real-word networks 
such as many biological networks and the Internet



Graph layout
A “layout” is an arrangement of the graph nodes (and edges) in 2D or 3D which facilitates 
its visualization and/or makes more evident some properties of the graph. 

The same graph can be visualized with many different layouts

a b

c
d

G= {a, b, c, d, e, f, (a,b), (a,c), (a,d), (a,e), (a,f), (b,d) }

ef

a b

c d

ef
a b
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d
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f
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b
c

d
e

f

Regular 
arrangements

Based on “physics”

F=kꞏx

F ~ -1/d2

Based on 
topological properties

(e.g. sort by k, to emphasize
hierarchy)



Main Biological Networks
Interactome: Undirected network. Nodes=proteins, edges=protein 
interactions.
Scale-free structure (due to gene duplication)=> resistance to random 
perturbation while sensitivity to direct “attacks”. Hubs=conserved and 
related to essentiality. Small world. Modular (topological 
clusters=functional clusters (biological processes, macromolecular 
complexes, …).

Metabolome: Directed network. Nodes=metabolites, edges=chemical 
transformations.
Scale-free structure=> resistance to random perturbation while 
sensitivity to direct “attacks”. Small world (=> short and efficient 
chemical transformations). Modular, topological clusters~ classical 
metabolic pathways.

Regulome: Directed network. Nodes=genes/proteins, edges=gene regulatory 
relationships (TF->gene).
Scale free for out-degree, exponential for in-degree. Modular, topological 
clusters= biological processes. Bottlenecks more related to essentiality than 
hubs. Presence of overrepresented small functional motifs such as the “feed-
forward loop”.

Other: genetic nets, phosphorilome, co-expression networks, miRNA-target 
networks, …



Monogenic vs. complex diseases



Reductionist approaches to diseases

Diagnosis
(markers)

treatment

The traditional reductionist approach to diseases is based on locating THE gene 
associated to the disease, so that it can serve as marker for diagnosing the 
disease and, eventually, as target for curing it.



Networked systems might require multicomponent interventions to modulate signalling outputs. a | Targets at divergent 
pathway nodes might cause undesired side effects when acted on in isolation. For example, AKT regulates several downstream 
outputs, so inhibiting this protein on its own is not likely to achieve a separation of desired and undesired effects. If we want to inhibit 
cell-proliferation and cell-survival pathways, for example, without affecting glycogen metabolism, we would need multicomponent 
drugs to specifically inhibit these two downstream pathways rather than using a single AKT inhibitor. b | Redundant pathways can 
compensate for inhibition of another pathway. For example, SMAD2 and SMAD3 perform largely similar functions in tissue culture 
experiments. A small-molecule inhibitor of either SMAD2 or SMAD3 alone would therefore not be effective at blocking transforming
growth factor- (TGF- ) signalling if cells responded by upregulating a redundant SMAD. TGF- regulates several downstream 
outputs, so inhibiting this protein on its own could cause undesired effects by inhibiting SMAD-independent TGF- effects, such as 
activation of mitogen-activated protein kinase (MAPK) signalling. Using multicomponent interventions to simultaneously inhibit SMAD2 
and SMAD3 would overcome both these problems by blocking SMAD-dependent TGF- effects without inhibiting SMAD-independent 
TGF- effects. TGFR, TGF- receptor. 

Keith, C.T., Borisy, A.A. and Stockwell, B.R. (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov., 4, 71-78.

Networked systems require “networked” drugs

The intrinsic complexity 
of biological systems, 
reflected in the 
molecular networks is 
the main cause for the 
limitations of the 
reductionist approach



Guggino WB, Stanton BA. 2006. New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat. Rev. Mol. Cell Biol.
7(6): 426–36

Classic monogenic diseases and networks

Even in “classic” monogenic diseases the causative gene(s) are inmmersed in 
molecular networks and hence, at least the severity of the disease depends on 
many other genes/mutations. Eg. Cistic fibrosis (CFTR gene).



Joseph Loscalzo, Albert-László Barabási and Edwin K. Silverman (Eds) (2017). Network Medicine: Complex Systems in Human 
Disease and Therapeutics. Cambridge, Massachusetts : Harvard University Press. 

Gene mutations and network context

Network context is fundamental for interpreting 
the differential effects of different mutations of 
the same gene.

Edgetic perturbation/disruption:
Disruption of a particular edge (e.g. 
interaction) in a biological network leaving 
the involved nodes functional (in their 
other functions/interactions).



Reductionist vs. systemic approaches to diseases

X
X

Diagnosis
(markers)

treatment



Perturbations in cellular networks might explain phenotype-
genotype relationships

Vidal M, Cusick ME, Barabási AL. (2011). Interactome networks and human disease. Cell. 144(6):986-98.



McGillivray, P., Clarke, D., Meyerson, W., Zhang, J., Lee, D., Gu, M., Kumar, S., Zhou, H. and Gerstein, M.B. (2018) Network Analysis as a 
Grand Unifier in Biomedical Data Science. Annual Review of Biomedical Data Science.

Diseases as re-wiring of molecular networks

For the network/systemic approaches to diseases, these are caused by perturbations 
(e.g. re-wiring) of large networks, instead of single genes.



Human molecular networks
-Protein interactions

- Metabolic network

- Gene regulatory network

- Others… co-expression nets, phosphorilome, 
RNA nets, combinations of the above …

Associated dynamical data:
- Gene expression
- Metabolomics

Main characteristics of the human networks:

- Modularity

- Scale free structure => hubs

- Small world

- Presence of small motifs



Hubs

- Upregulated genes associated to lung 
carcinoma tend to have higher degree than 
unchanging ones. 

-346 proteins involved in Cancer have twice as 
many interactors as “non-cancer” proteins

-disease proteins in the OMIM Morbid Map have 
more protein–protein interactions than do non-
disease proteins

Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 
12(1): 56–68.

disease gene

hubessential gene

- Nevertheless, disease genes ≠ essential genes 
(not viable => no disease)



Capriotti, E., Ozturk, K. and Carter, H. (2019) Integrating molecular networks with genetic variant interpretation for precision
medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 11(3), e1443.

“Hubs” are more related to essentiality than to disease. 
“Bottlenecks” are more related to diseases, at least in Cancer.

Disease-related and essential genes
in the interactome



Disease-related and essential genes
in the interactome

Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 
12(1): 56–68.

Disease-related proteins tend to have more interactors than the average but they 
are not hubs. Hubs tend to be essential proteins and hence do not lead to disease 
but to (embryonic) death.



Network modules

Module: group of nodes highly 
connected among themselves 
and poorly connected to the 
rest of the network

In general… function/role 
separable from the rest of the 
network

In biological nets… 
correspondence with 
“functional” modules/pathways



Diseases and symptoms are related to
Network modules

Monica Chagoyen, Florencio Pazos (2016).  Characterization of clinical signs in the human interactome, Bioinformatics. 32(12): 
1761–1765,

Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabási AL. (2015). Disease networks. Uncovering disease-disease 
relationships through the incomplete interactome. Science. 347(6224):1257601.

Example of a modular clinical sign: café-au-lait spots.

Genes known to be associated to diseases and clinical signs tend to cluster in 
molecular networks.



Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, et al. (2016). Genome-wide prediction and functional characterization of the 
genetic basis of autism spectrum disorder. Nat. Neurosci. 19(11): 1454–62

Diseases and symptoms are related to network modules
(=functional pathways)

Even in very complex diseases involving hundreds/thousands of genes, these 
tend to concentrate in a reduced number of modules/pathways



Relationship between 
network topological modules, functional pathways and diseases 

Working model of network-based approaches to diseases:

“Disease Z is due to a malfunctioning in biological system Y, whose function is carried out 
by a group of proteins working together (reflected in topological module X)”

Associated to disease Z

Topological 
Module/cluster X

Monica Chagoyen, Juan A G Ranea and Florencio Pazos. (2019). Applications of molecular networks in biomedicine. Biology Methods 
and Protocols. 4(1):bpz012. 

Biological function Y



Identifying disease-related modules
General strategy
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Altered genes

Map genes to net

“Extend/restrict” based
on network criteria
(e.g. topological clusters, 
minimum paths, network 
propagation, …

e.g. GWAS
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Identifying disease-related modules
General advantages

- Identify genes not altered (or not passing threshold for being selected as “altered”) but eventually 
important. E.g. “f” (connecting a and e)

- Discard “unrelated” genes (experimental errors, among other things). E.g “I”.

- Provide additional molecular information on the disease/alteration. E.g. Disease related to pathway “1”

- Identify other potential targets eventually more “drugeable” (e.g f, d)

- Design re-wiring strategies for recovering, for example, a malfunctioning module.

Cho D-Y, Kim Y-A, Przytycka TM (2012) Chapter 5: Network Biology Approach to Complex Diseases. PLoS Comput Biol 8(12): e1002820.



Cowen, L., et al. (2017) Network propagation: a universal amplifier of genetic associations. Nature Rev Genetics. 18, 551.

Identifying disease-related modules
Network propagation – General strategy



Carlin, D.E., et al. (2017) Network propagation in the cytoscape cyberinfrastructure. PLOS Computational Biology, 13(10), e1005598.

Identifying disease-related modules
Network propagation with Cytoscape



Identifying disease-related modules
Network propagation

“HOTNET”



Identifying disease-related modules



Identifying disease-related modules
Combining genotypic and phenotypic alterations
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“Extend/restrict” based
on network criteria
(e.g. topological clusters, 
minimum paths, network 
propagation, …



Genotypic
variation

Phenotypic
variation

Distance-based Information/”electric current”/flow -based

Cho D-Y, Kim Y-A, Przytycka TM (2012) Chapter 5: Network Biology Approach to Complex Diseases. PLoS Comput Biol 8(12): e1002820.

Identifying disease-related modules
Combining genotypic and phenotypic alterations



Identifying disease-related modules
Combining genotypic and phenotypic alterations

Distance-based approaches

Look for (minimum) pathways of protein/genes which best 
explain the long-range relationships observed



Identifying disease-related modules
Combining genotypic and phenotypic alterations

Flow-based approachess



Benchmarking disease module identification approaches

Choobdar, S., et al. (2019). Assessment of network module identification across complex diseases. Nature Methods.
16(9):843-852.

As new methods for identifying disease-associated network modules show up, different initiatives appeared 
to benchmark and compare them in a fair way, based on the same datasets, etc.



Benchmarking network-based approaches for 
filtering GWAS data

Climente-González H, Lonjou C, Lesueur F; GENESIS study group; Stoppa-Lyonnet D, Andrieu N, Azencott CA. (2021). Boosting 
GWAS using biological networks: A study on susceptibility to familial breast cáncer. PLoS Comput Biol. 17(3): e1008819.

- Network methods 
recovered more 
interpretable results than a 
standard GWAS.

- Consensus among 
methods yield better 
results



Wright SN, Colton S, Schaffer LV, Pillich RT, Churas C, Pratt D, Ideker T. (2025). State of the interactomes: an evaluation of 
molecular networks for generating biological insights. Mol Syst Biol. 21(1):1-29

Not only the methods. The interactomes used for 
network-based priorization have to be benchmarked 
too.

Large composite networks (e.g STRING) remain the 
most powerful for disease gene prioritization

Comparing interactomes used for network-based priorization



Motter, A.E., Gulbahce, N., Almaas, E. and Barabasi, A.L. (2008) Predicting synthetic rescues in metabolic networks. Mol Syst Biol., 4, 168.

Design therapeutic strategies with networks in mind

Sometimes it is better to break than trying to repair



Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, et al. 
2012. Sequential application of anticancer drugs enhances 
cell death by rewiring apoptotic signaling networks. Cell
149(4): 780–94

Saxena P, Charpin-El Hamri G, Folcher M, Zulewski H, 
Fussenegger M. 2016. Synthetic gene network restoring 
endogenous pituitary-thyroid feedback control in 
experimental Graves’ disease. PNAS 113(5): 1244–49

Select which nodes to touch (inhibit with 
drug) in the network to get the desired re-
wiring

Create a synthetic net 
that restores the 
function of the 
malfunctioning one

Design therapeutic strategies with networks in mind



Biomarkers, for diagnosis/prognosis

Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D. and Ideker, T. (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol., 3, 140.

Networks are betters 
markers of an 
alteration/disease than 
single genes or 
combinations of them



Biomarkers, for diagnosis/prognosis

Mellors, Theodore, et al. Clinical validation of a blood-based predictive test for stratification of response to tumor necrosis factor 
inhibitor therapies in rheumatoid arthritis patients. (2020). Network and Systems Medicine. 3.1: 91-104.

Network-based test for 
Rheumatoid arthritis.

Clinically tested



Pai S, Bader GD. Patient Similarity Networks for Precision Medicine (2018). J Mol Biol. 430 (18 Pt A):2924-2938.

Hofree M, Shen JP, Carter H, Gross A, Ideker T. (2013). Network-based stratification of tumor mutations. Nat. Methods 10(11): 1108–15

Network-based patient stratification
(personalized medicine)

Patient networks can be 
used to identify patient 
subgroups which, for 
example, present different 
responses to drugs.



Maryam Lotfi Shahreza, Nasser Ghadiri, Sayed Rasoul Mousavi, Jaleh Varshosaz, James R Green. (2018).  A review of network-based 
approaches to drug repositioning, Briefings in Bioinformatics, 19(5): 878–892,

Xiao-Ying Yan,ab  Shao-Wu Zhang  and  Song-Yao Zhanga (2016). Prediction of drug–target interaction by label propagation with mutual 
interaction information derived from heterogeneous network. Mol. BioSyst.,12, 520-531 

Drug repositioning
It often takes 10–15 years of research and 0.8–1.5 billion dollars to bring a drug from abstract concept to 
market-ready product [1]. Every year, ∼90% of drugs fail during FDA evaluations, preventing their use in 
actual therapy.

Drug repositioning (DR, aka d. repurposing, redirecting, retargeting, …) seeks to find new uses for existing 
drugs, with established and demonstrated human safety. Usually this involves finding new targets for 
approved drugs.

Computational methods for DR include molecular docking, machine learning, literature mining, … and 
network-based approaches.



Drug repositioning
COVID-19

Morselli Gysi, Deisy; do Valle, Ítalo; Zitnik, Marinka; Ameli, Asher; Gan, Xiao; Varol, Onur; Ghiassian, Susan Dina; Patten, J J; Davey, 
Robert A; Loscalzo, Joseph; Barabási, Albert-László. (2021). Network medicine framework for identifying drug-repurposing 
opportunities for COVID-19. Proc Natl Acad Sci U S A. 118(19):e2025581118. 

“We deployed algorithms relying on artificial intelligence, network diffusion, and network 
proximity […] to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. We 
screened in human cells the top-ranked drugs, obtaining a 62% success rate. Of the six 
drugs that reduced viral infection, four could be directly repurposed to treat COVID-19. We 
also found that 76 of the 77 drugs that successfully reduced viral infection do not bind the 
proteins targeted by SARS-CoV-2, indicating that these network drugs rely on network-
based mechanisms that cannot be identified using docking-based strategies.



Cheng, F., Kovács, I.A. and Barabási, A.-L. (2019) Network-based prediction of drug combinations. Nature communications, 10(1), 1197.

Drug combinations

Use networks to predict pairs of 
(approved) drugs with 
synergistic effects

“for hypertension and cancer, we find that only 
one of the six classes correlates with therapeutic 
effects: if the targets of the drugs both hit 
disease module, but target separate 
neighborhoods.” 



Other Networks used for studying human pathologies

Apart from the “generic” 
molecular networks 
(interactome, metabolome, gene 
regulation, …) some networks 
were generated to specifically 
represent pathology-related 
information

Maryam Lotfi Shahreza, Nasser Ghadiri, Sayed Rasoul Mousavi, Jaleh Varshosaz, James R Green. (2018).  A review of network-based 
approaches to drug repositioning, Briefings in Bioinformatics, 19(5): 878–892,

• Drug-target interactions (DTI)
• Drug-drug interactions (based on chemical 

similarity, biological effect similarity, target(s) 
similarity, …)

• Drug-disease associations
• Drug-side effect associations
• Disease-disease associations
• Integrated (combined) networks
• ….

Networks specifically generated for studying human pathologies

Other networks used for studying human pathologies

• Social Networks
• Technological networks
• ….



Deisy Morselli & Albert-László Barabási. (2023). Noncoding RNAs improve the predictive power of network medicine. Proc. Natl. 
Acad. Sci. USA.120(45):e2301342120

Integrated networks
(aka. multipartite)

Including non-coding RNAs (ncRNA) in the network



Deisy Morselli & Albert-László Barabási. (2023). Noncoding RNAs improve the predictive power of network medicine. Proc. Natl. 
Acad. Sci. USA.120(45):e2301342120

Integrated networks

Including non-coding RNAs 
(ncRNA) in the network 
improve the identification of 
disease-related modules 
and genes



Disease network



“network pharmacology”
Drug-target network

Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L. and Vidal, M. (2007) Drug-target network. Nat Biotechnol., 25, 1119-1126.



Summary

• Any phenomenon that can be modelled as entities linked by relationships can be 
represented as a network and studied with the tools of Graph Theory. 

• Many phenomena in different disciplines have been studied from this point of view, 
including molecular phenomena as soon as the data required to assemble these 
networks became available.

• Biological (molecular) networks are the prototypic subject of study of Systems 
Biology, that focus on the complex network of relationships between components 
instead of the components themselves, hence complementing the reductionist approach 
of Molecular Biology.

• From the topological features of molecular networks, biological information related 
to their functioning, resistance to perturbations, ability to transmit information, etc. has 
been extracted.

• These network approaches are now being used to study and treat human pathologies.
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