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Biological Networks and Graph Theory

- Networks

- Biological and molecular networks

- Short intro to Graph Theory

- Characteristics of the main molecular networks

- Network applications to human pathologies

- Cytoscape practical

http://csbg.cnb.csic.es/pazos/cursos/UMA _BIF/



Network representation of a phenomenon

Some phenomena/data can be represented as entities

@ices”) linked by relationships (“edges” _~Network

Node — Generic entity, physical or not.

(gene, protein, metabolite, cellular state, disease, ...)
It can have associated features (quantitative or qualitative)

C. O

Edge — Generic relationship, in the broadest sense.
(interaction (physical or functional), transcriptional control,
chemical transformation (reaction), ...)

It can have associated features (quantitative or qualitative):
weight, direction, ..
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Large networks
Network theory / Graph theory

Once a given phenomenon is
modelled as a large network, it can
be studied using mathematical
approaches (Graph Theory) in
order to extract_information hidden
in_its structure and topological

patterns

*Gavin, A.C., et al. (2002) Functional organisation of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141-147.



Networks

(@ N A UR Gl S Networks have been used to
. model phenomena in all
scientific disciplines
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Biological networks

a Network Networked b
embedding system
%% In Biology, networks have
been used to model diverse
= Population phenomena at all biological
% @ levels
: Human
% e I Organ
A — Cell
A — Organelle
R Molecule

P McGillivray, D Clarke, W Meyerson, J Zhang, D Lee, M Gu, S Kumar, H Zhou, MB Gerstein (2018). Network Analysis as a Grand Unifier in
Biomedical Data Science. Annual Review of Biomedical Data Science Vol. 1. 153-180



Molecular networks

Network approaches have been applied to the study of molecular phenomena as the data
required to assemble thesqll_nlet_works became available (-omics techniques).
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Figure 1. Examples of the five major biological networks. [4) A yeast transcription factor-binding network, composed of known transcription factor-binding data collected with
large-scale ChIP—chip and small-scale experiments. This figure was generated with the program Pajek (de Nooy et al. 2005). [B] A veast protein-protein interaction network,
containing protein-protein interactions identified by yeast two-hybrid and protein complexes identified by affinity purification and mass spectrometry (Barabasi and Bonabeau
2003). (Reprinted by permission from Macmillan Publishers Ltd: Nature [Jeong et al. 2001] © 2001.) Nodes are colored according to the mutant phenotype. [C] A yeast
phosphorylation network comprised primarily of in vitro phosphorylation events identitied using protein microarrays (Pracek et al. 2005). The figure was generated with Osprey
1.2.0. (Breitkreutz et al. 2003). (D) An E. coli metabolic network with 574 reactions and 473 metabolites colored according to their modules (Reprinted by permission from
Macmillan Publications Ltd: Nature [Guimera and Nunes Amaral 2005], © 2005). (E) A yeast genetic network constructed with synthetic lethal interactions using SGA analysis
on eight yeast genes (From Tong et al. 2001; reprinted with permission from AAAS). Nodes are colored according to their YPD cellular roles.



-omics and molecular networks in the context of the Central Dogma

— Genomics

Gene regulation nets.
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Systems Biology

Systems biology 1s the study of biological systems whose
behaviour cannot be reduced to the linear sum of their parts’. It 1s
a biology-based interdisciplinary field of study that focuses on
complex interactions within biological systems, using a holistic
approach (holism instead of the more traditional reductionism) to

biological research.
(nature.com, Wikipedia)



Is the reductionist approach of molecular biology enough?

Biological systems are a prototype of complex systems: systems
characterized by a large number of components interacting non-linearly. They
can not be (fully) modelled by first principles: a minimum difference in de
details leads to a totally different outcome.

“The whole is more than the sum of the parts”

The main idea behind complex systems is that the ensemble behaves in ways not
predicted by its components. The interactions matter more than the nature of the
units.

Studying individual ants will almost never give us a clear indication of how the ant colony
operates. For that, one needs to understand an ant colony as an ant colony, no less, no
more, not a collection of ants. This is called an “emergent” property of the whole, by
which parts and whole differ because what matters are the interactions between such
parts. And interactions can obey very simple rules.

N. N. Taleb.
Skin in the game - Hidden asymmetries in daily life.



Reductionist vs. systemic approaches in other scientific areas




Graph

A graph 1s a mathematical object used to represent entities
and relationships between them (understanding entity and
relationship 1n the broadest possible way)

Formally, graph G 1s a pair of sets (V,E)

— V={v,,v,,....v,} 1s the set of vertices/nodes

— E={(vy,v)),(V;5,Vp)......} 18 a set of edges (pairs formed by the
elements in V).

— The number of nodes 1s called order of the graph.
— The number of edges is called size of the graph.



Graph

Example of a graph (order: 8 , size: 11).

V5 V4 Vg
O
Vi \ Vs
V3 Vs V4 C. Aguirre (UAM)

V=1{V,V5,V3,V4,V5,V6,V7,Vg |

E={(v,v2),(V1,V3),(V2,V4),(V3,V5),(V4, V),
(V5,V7),(Vs V)5 (V7,V8)5(V2,V5),(V4,V5) (V6. V7) |



Hypergraph

An hyperedge is an edge connecting
more (or less) than two nodes. Graphs
with hyperedges are called hypergraphs

V={vl,v2,v3,v4,v5,v6,v7}

E={el,e2,e3,e4}
={ {vl,v2,v3}, {v2,v3}, {v5}, {v3,v6,v7} }




Directed graph

A directed graph (or digraph) is a graph in which de edges have
directionality:  (vi,v)) # (v],v1)

V, Vy Vg
/ >0
Vi .\ Vg




Weighted graph

A weighted graph is a graph in which the edges have associated numerical
values (to quantify some characteristic of the relationship (importance,
distance, capacity ...)

V5 1 Vy 5 V5 Vau Vg




Path

A path is a alternating sequence of nodes and edges connected in the network in
which all nodes (and consequently all edges) are distinct.

A closed path (aka cycle) is a closed sequence of nodes and edges in which

all nodes (and consequently all edges) are distinct.

\" \"
V, 4 6

o0

V3 Vs \z

The shortest path between two nodes...

A V4 Ve

o0

C={V{,V5,V5,V4,V(, V7, Vg |
k=6

C={V,V2,V4,Vg, Vg
k=4

Distance between two nodes
= length of shortest path
connecting them

Distance(v1,v8)=4



Clusters/modules/communities

Densely connected subgraphs = Subgraphs with many internal connections and
few connections to the rest of the graph.
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Signal diffusion in networks — aka “network propagation”

Detect the network regions “affected” by a set of nodes by propagating a signal from them.
Examples:

Random walks Heat diffusion

Simulates a set of n walkers falling in the node(s) of Simulates that the node(s) of interest are heat
interest and moving m steps randomly following the sources and the network edges wires able to
network edges transmit it.

&P o
$ - o9 //5//%\0/6
T | & o\

- g ~p O O

| ™~

I
Five eight-step random walks
from a central point in a 2D .

Three 4-step random walkers starting —

regular graph. Some paths at the central node of right cluster O O O .
appear shorter than eight - \ / \
steps where the route has Q/O\
doubled back on itself. - ._‘
(Wikipedia) O\\ Q/ \O
Graph Kernels
Mathematical operations with matrix representations of graphs _

that end up in a vector/matrix with the signal associated to each

node and/or measures of “network distance” between nodes. HEAT



Main graph metrics
Local (node/edge) metrics

* Degree: k;

* Clustering coeficient: C.=2-n/(k?-k)

* Betweenness (node or edge): B;=number of shortests paths using node/edge
* Closeness: C=1/2d,,

ce:99
1.

Global (graph) metrics

These metrics summarize the main topological features of graphs and can be used to
classify them.

* Size |E| and order |V|

* Dispersion (|[E|/|V])

* Degree distribution: k vs. p(k)
» Average degree (<k>)

* Clustering coefficient (C)

 Average/characteristic path length (L)
The characteristic path length is the average of the lengths of the shortest
paths (distances) between all nodes L = <dij>

* Diameter (D)
The diameter of a graph is the maximum path length. D = max(dij)



Node degree

D

Vg Degree (v2) = 15 V2 4 5

regular graph: degree(i)=degree(j) V 1, j

Degree (vV2) =3 —

Out-degree(v2) = 1
in- degree (v2) = 2

a2




Node/Edge betweenness-centrality
And closeness-centrality

Betweenness-centrality: Number (or fraction) of shortest-paths passing
through that node/edge

B(V) =9 absolute or..
= 9/N relative to the number s g VI :
of shortest paths

N: #shortest paths
= #node pairs
= (1"2-1)/2 Low B

High B

Tries to quantify the importance of a node/edge for the “transfer of information™ between
different parts of the network. Points to “bottlenecks”, “bridges” in the network.

Closeness-centrality: Inverse of the sum of distances to all other
nodes/edges

= Ajsthe most central
according to the
degree

(graph above)
C(V) = 1/(1+2+2+1+2+2) = 1/10

= B s the most central

according to closeness

and betweenness
High C Not the same as “degree”

Points to central nodes close to most nodes in the network.

Low C




Clustering coefficient

The clustering coefficient of a node is the probability of finding a connection between its connected nodes
(neighbors).

It is calculated as the number of connections between its neighbors (n) over the maximum number of
possible connections between them.

Ci=n/(ki*(ki-1)/2)  (being ki the degree of the node = number of neighbors)

It gives an idea how clustered or sparse is the neighborhood of a node.

bbb b

Ci=3/3=1.0 Ci=2/3=0.67 Ci=1/3=0.33 Ci=0/3 =0.0

The clustering coefficient of a graph is the average of the clustering coefficients of all its nodes.
It gives an idea of how clustered/interconnected a graph is (vs. “star-like” graphs and trees)

C =<Ci>



Global metrics - Degree distribution

B Scale-free network

A Random network
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Barabasi, A.L. and Oltvai, Z.N. (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet, 5, 101-113.



Main graph types

Random graphs

Generation: assign E edges randomly, from the (N2-N)/2 possible. Equivalent to

create each edge with probability p=E/(N2-N)/2
Degree distribution: poison.

Regular graphs
Degree distribution: single value k.

Mathematical “curiosities”. There are analytic expressions for all the metrics.

For small k (disperse graphs), C~0.75 (high) and L ~ N/k

Scale-free graphs

Arise from various possible generation mechanisms:

—  Preferential attachment: add nodes to an existing network
connecting them PREFERENTIALLY to already highly
connected nodes (“rich gets richer”, ...)

—  Node duplication preserving links (biological networks)

Characterized by “hubs” (highly connected nodes, in
low number)

“Small world” in some cases (hubs act as shortcuts).
Degree distribution: power-law: p(k) = C-k¥

v characterizes the connectivity pattern of the network
(proportion of hubs) and in real networks it ranges ~ 2.0
-3.0

Adequately represent a number of real-word networks
such as many biological networks and the Internet

Protains

Before duplication

After duplication

Protains




Graph layout

A “layout” is an arrangement of the graph nodes (and edges) in 2D or 3D which facilitates
its visualization and/or makes more evident some properties of the graph.

The same graph can be visualized with many different layouts

G=1{a, b, c,d, e, f (ab), (a,c), (a,d), (a,e), (a,f), (b,d) }

e

. . Based on
Regular Based on “physics topological properties
arrangements (e.g. sort by k, to emphasize
hierarchy)

T



Main Biological Networks .

Interactome: Undirected network. Nodes=proteins, edges=protein
interactions.

Scale-free structure (due to gene duplication)=> resistance to random
perturbation while sensitivity to direct “attacks”. Hubs=conserved and
related to essentiality. Small world. Modular (topological
clusters=functional clusters (biological processes, macromolecular
complexes, ...).

Metabolome: Directed network. Nodes=metabolites, edges=chemical
transformations.

Scale-free structure=> resistance to random perturbation while
sensitivity to direct “attacks”. Small world (=> short and efficient
chemical transformations). Modular, topological clusters~ classical
metabolic pathways.

Regulome: Directed network. Nodes=genes/proteins, edges=gene regulatory
relationships (TF->gene).

Scale free for out-degree, exponential for in-degree. Modular, topological
clusters= biological processes. Bottlenecks more related to essentiality than
hubs. Presence of overrepresented small functional motifs such as the “feed-
forward loop”.

Other: genetic nets, phosphorilome, co-expression networks, miRNA-target
networks, ...



Monogenic vs. complex diseases

Monogenic disease

Mutation
CFTR gene p Cystic fibrosis

P Gene +——— Gene

,;w\“w w — o

factor / T \ factor

Gender Age Anatomy

Whittaker, P. A. Genes for asthma: much ado about nothing? Cuwr Opin Pharmacol 3, 212-219 (2003).

« Anemia falciforme
» Fibrosizs quistica

« Fenilcetonuria

« Enfermedad de Batten

» Hemocromatosis

« Deficiencia de alfa-1 antitripsina
 Enfermedad de Huntington

« Enfermedad de Marfan

« Distrofia muscular de Duchenne
« Sindrome de cromosoma X fragil
« Hemofilia A

Cancer
Autismo

Obesidad
Parkinson

Esclerosis mditiple
Osteoporosis,



Reductionist approaches to diseases

Diagnosis treatment
(markers)

The traditional reductionist approach to diseases is based on locating THE gene
associated to the disease, so that it can serve as marker for diagnosing the
disease and, eventually, as target for curing it.



Networked systems require “networked” drugs
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Nature Reviews | Drug Discovery

Networked systems might require multicomponent interventions to modulate signalling outputs. a | Targets at divergent
pathway nodes might cause undesired side effects when acted on in isolation. For example, AKT regulates several downstream
outputs, so inhibiting this protein on its own is not likely to achieve a separation of desired and undesired effects. If we want to inhibit
cell-proliferation and cell-survival pathways, for example, without affecting glycogen metabolism, we would need multicomponent
drugs to specifically inhibit these two downstream pathways rather than using a single AKT inhibitor. b | Redundant pathways can
compensate for inhibition of another pathway. For example, SMAD2 and SMAD3 perform largely similar functions in tissue culture
experiments. A small-molecule inhibitor of either SMAD2 or SMAD3 alone would therefore not be effective at blocking transforming
growth factor- (TGF- ) signalling if cells responded by upregulating a redundant SMAD. TGF- regulates several downstream
outputs, so inhibiting this protein on its own could cause undesired effects by inhibiting SMAD-independent TGF-  effects, such as
activation of mitogen-activated protein kinase (MAPK) signalling. Using multicomponent interventions to simultaneously inhibit SMAD2
and SMAD3 would overcome both these problems by blocking SMAD-dependent TGF-  effects without inhibiting SMAD-independent
TGF-  effects. TGFR, TGF-  receptor.

Keith, C.T., Borisy, A.A. and Stockwell, B.R. (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov., 4, 71-78.



Classic monogenic diseases and networks

CFTR
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Even in “classic” monogenic diseases the causative gene(s) are inmmersed in
molecular networks and hence, at least the severity of the disease depends on
many other genes/mutations. Eg. Cistic fibrosis (CFTR gene).

Guggino WB, Stanton BA. 2006. New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat. Rev. Mol. Cell Biol.
7(6): 426-36



Gene mutations and network context

- D
SHC1 APP
( PTPRJ ) ( SDCBP )

- J

O Mutations causing gastric cancer

@ Mutations causing renal carcinoma

Network context is fundamental for interpreting
the differential effects of different mutations of
the same gene.

Edgetic perturbation/disruption:
Disruption of a particular edge (e.g.
interaction) in a biological network leaving
the involved nodes functional (in their
other functions/interactions).

Wild-Type

O
o
O O O 0]
Node Edge A Edge B Gain of
Removal Perturbation Perturbation Interaction
Phenotype p

Phenotype o Phenotype |

Siffarunt Types of mige pertusbalios s

Phenotype |

1 atimet ¥ afing Lo distinet phenstypes

Joseph Loscalzo, Albert-Laszlé Barabasi and Edwin K. Silverman (Eds) (2017). Network Medicine: Complex Systems in Human
Disease and Therapeutics. Cambridge, Massachusetts : Harvard University Press.



Reductionist vs. systemic approaches to diseases

Diagnosis treatment
(markers)




Perturbations in cellular networks might explain phenotype-
genotype relationships

Genotype Systems Phenotypes
and networks

Mendelian Mendelian

mutations disorders
. / Complex

GWAS 10Ci = —— sraits

Cancer associated Tumors
genes

Perturbations

Figure 1. Perturbations in Biological Systems and Cellular Networks
May Underlie Genotype-Phenotype Relationships

By interacting with each other, genes and their products form complex cellular
networks. The link between perturbations in network and systems properties
and phenotypes, such as Mendelian disorders, complex traits, and cancer,
might be as important as that between genotypes and phenotypes.

Vidal M, Cusick ME, Barabasi AL. (2011). Interactome networks and human disease. Cell. 144(6):986-98.



Diseases as re-wiring of molecular networks

a b

Rewiring network
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Time (disease progression)

For the network/systemic approaches to diseases, these are caused by perturbations
(e.g. re-wiring) of large networks, instead of single genes.

McGillivray, P., Clarke, D., Meyerson, W., Zhang, J., Lee, D., Gu, M., Kumar, S., Zhou, H. and Gerstein, M.B. (2018) Network Analysis as a
Grand Unifier in Biomedical Data Science. Annual Review of Biomedical Data Science.



Human molecular networks

-Protein interactions
- Metabolic network
- Gene regulatory network

- Others... co-expression nets, phosphorilome,
RNA nets, combinations of the above ...

Associated dynamical data:
- Gene expression
- Metabolomics

Main characteristics of the human networks:

- Modularity

- Scale free structure => hubs

- Small world

- Presence of small motifs



Hubs

- Upregulated genes associated to lung
carcinoma tend to have higher degree than
unchanging ones.

B
b
-346 proteins involved in Cancer have twice as L
many interactors as “non-cancer” proteins P
-disease proteins in the OMIM Morbid Map have '

more protein—protein interactions than do non-
disease proteins

- Nevertheless, disease genes # essential genes
(not viable => no disease)

disease gene

e "\

essential gene <« » hub

Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet
12(1): 56-68.



Disease-related and essential genes
In the interactome
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“Hubs” are more related to essentiality than to disease.
“Bottlenecks” are more related to diseases, at least in Cancer.

Capriotti, E., Ozturk, K. and Carter, H. (2019) Integrating molecular networks with genetic variant interpretation for precision
medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 11(3), e1443.



Disease-related and essential genes
In the interactome

& b Periphery
Human genes ~25,000 Essential

Essential Disease peoteis
genes (1,665) genes (1,777)
Disease
proteins
Essential Non-essential
non-disease disease
genes (1,267) genes (1,379)
Essential
disease
genes (398)

Disease-related proteins tend to have more interactors than the average but they
are not hubs. Hubs tend to be essential proteins and hence do not lead to disease
but to (embryonic) death.

Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet
12(1): 56—-68.



Network modules

Module: group of nodes highly
connected among themselves
and poorly connected to the
rest of the network

In general... function/role
separable from the rest of the
network

In biological nets...
correspondence with
“functional” modules/pathways




Diseases and symptoms are related to
Network modules

I i Muitiple scierosh [ WY
@ Pemsroral dsorders [P
I @ FEhegmaboid arthe ik (A

Example of a modular clinical sign: café-au-lait spots.

Genes known to be associated to diseases and clinical signs tend to cluster in
molecular networks.

Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabasi AL. (2015). Disease networks. Uncovering disease-disease
relationships through the incomplete interactome. Science. 347(6224):1257601.

Monica Chagoyen, Florencio Pazos (2016). Characterization of clinical signs in the human interactome, Bioinformatics. 32(12):
1761-1765,



Diseases and symptoms are related to network modules
(=functional pathways)

Synaptic transmission and plasticity
Locomotory behavior
G-protein-cAMP signaling

Enteric nervous system development

Embryonic development and morphogenesis
Smoothened (Hedgehog) signaling

Sensory perception Histone modification
lon transport and drug metabolism Chromatin remodeling
Meurclogical blood pressure regulation Immune response

mRMA splicing & transport

@ G1-10-S transition in cell cycle
Protein ubiguitination & amino acid metabolism
Antigen processing & presentation

Glucose metabolism Rho GTPase, IGF
@ Platelet degranulation @ and PI3K signaling
IFN-7 signaling
@ G2-10-M transition in cell cycle
Actin cytoskelaton

MAPK, TGF and TLR signaling
@ Endederm development

Circadian rhythm

Even in very complex diseases involving hundreds/thousands of genes, these
tend to concentrate in a reduced number of modules/pathways

Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, et al. (2016). Genome-wide prediction and functional characterization of the
genetic basis of autism spectrum disorder. Nat. Neurosci. 19(11): 1454-62



Relationship between
network topological modules, functional pathways and diseases

‘ Biological function Y

°Associated to disease Z

Topological
Module/cluster X

Working model of network-based approaches to diseases:

“Disease Z is due to a malfunctioning in biological system Y, whose function is carried out
by a group of proteins working together (reflected in topological module X)”

Monica Chagoyen, Juan A G Ranea and Florencio Pazos. (2019). Applications of molecular networks in biomedicine. Biology Methods
and Protocols. 4(1):bpz012.



|dentifying disease-related modules
General strategy

Altered genes

senonSed- GWAS

Organism-level Phenotype Molecular-level Phenotype
(Gene Expression)

L0
|‘i|’| Il.’

Condition 1 Condition 2

sEEEg,
S 2 v,

—

“Extend/restrict” based
on network criteria

(e.g. topological clusters,
minimum paths, network
propagation, ...

Kim, Y.-A. & Przytycka, T. M. Bridging the Gap between Genotype and Phenotype via Network Approaches. Front. Genet. 3,

..l-..-l“




|dentifying disease-related modules
General advantages

*
L 4

L .
"aagguus®

L 4
663”

- Identify genes not altered (or not passing threshold for being selected as “altered”) but eventually

important. E.g. “f” (connecting a and e)
- Discard “unrelated” genes (experimental errors, among other things). E.g “I”.

- Provide additional molecular information on the disease/alteration. E.g. Disease related to pathway “1”

- Identify other potential targets eventually more “drugeable” (e.g f, d)

- Design re-wiring strategies for recovering, for example, a malfunctioning module.

Cho D-Y, Kim Y-A, Przytycka TM (2012) Chapter 5: Network Biology Approach to Complex Diseases. PLoS Comput Biol 8(12): €1002820.



|dentifying disease-related modules
Network propagation — General strategy

© Profile 1 |
O Profile 2
© Both

Before propagation After propagation

Nature Reviews | Genetics

Cowen, L., et al. (2017) Network propagation: a universal amplifier of genetic associations. Nature Rev Genetics. 18, 551.



|dentifying disease-related modules
Network propagation with Cytoscape
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Carlin, D.E., et al. (2017) Network propagation in the cytoscape cyberinfrastructure. PLOS Computational Biology, 13(10), e1005598.



|dentifying disease-related modules
Network propagation

Seeples | fuman Interaction Network
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Vandin, F,, Upfal, E. & Raphael, B. J. Algonthms for detecting significantly mutated pathways in cancer. J. Comput. Biol. 18, 607-622 (2011).

Cancer Genome Atlas Research Network. Integrated genomic analyses of ovanan carcinoma. Nature 474, 609-615 (2011).



|dentifying disease-related modules
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Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D. & Ideker, T. Network-based classification of breast cancer
metastasis. Mol Syst Biol 3, 140 (2007).



|dentifying disease-related modules
Combining genotypic and phenotypic alterations

Altered genes

EEEEEEpEEEEEEEEN
Organism-level Phenotype Molecular-level Phen

(Gene Expression) b
S8

Condition 1 Condition 2

C
e
1

m

“Extend/restrict” based
on network criteria
(e.g. topological clusters,
minimum paths, network
propagation, ...

Kim, Y.-A. & Przytycka, T. M. Bridging the Gap between Genotype and Phenotype via Network Approaches. Front. Genet. 3,



ldentifying disease-related modules
Combining genotypic and phenotypic alterations

Genotypic
variation
a
(o]
Distance-based Information/”electric current”/flow -based

Cho D-Y, Kim Y-A, Przytycka TM (2012) Chapter 5: Network Biology Approach to Complex Diseases. PLoS Comput Biol 8(12): €1002820.



|dentifying disease-related modules
Combining genotypic and phenotypic alterations
Distance-based approaches
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Look for (minimum) pathways of protein/genes which best
explain the long-range relationships observed

Carter, G. W. et al. Prediction of phenotype and gene expression for combinations of mutations. Mol Syst Biol 3, 86 (2007).



|dentifying disease-related modules
Combining genotypic and phenotypic alterations
Flow-based approachess

C eQED single locus model

A Sample network

Tu, Z., Wang, L., Arbeitman, M. N., Chen, T. & Sun, F An integratve approach for causal gene identification and gene regulatory pathway
inference. Bioinformatcs 22, e488-96 (2006).

Suthram, ., Beyer, A, Karp, R. M., Bldar, Y. & Ideker, T. eQED: an efficient method for interpreting eQTL associations using protein networks. h
Syat Biol 4, 162 (2008).



Sub-challenge 1

Benchmarking disease module identification approaches
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As new methods for identifying disease-associated network modules show up, different initiatives appeared
to benchmark and compare them in a fair way, based on the same datasets, etc.

Choobdar, S,, et al. (2019). Assessment of network module identification across complex diseases. Nature Methods.

16(9):843-852.



Benchmarking network-based approaches for

filtering GWAS data
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Network methods
recovered more
interpretable results than a
standard GWAS.

Consensus among
methods yield better
results

Climente-Gonzalez H, Lonjou C, Lesueur F; GENESIS study group; Stoppa-Lyonnet D, Andrieu N, Azencott CA. (2021). Boosting
GWAS using biological networks: A study on susceptibility to familial breast cancer. PLoS Comput Biol. 17(3): e1008819.



Comparing interactomes used for network-based priorization
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Wright SN, Colton S, Schaffer LV, Pillich RT, Churas C, Pratt D, Ideker T. (2025). State of the interactomes: an evaluation of
molecular networks for generating biological insights. Mol Syst Biol. 21(1):1-29



Design therapeutic strategies with networks in mind
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Sometimes it is better to break than trying to repair

Motter, A.E., Gulbahce, N., Almaas, E. and Barabasi, A.L. (2008) Predicting synthetic rescues in metabolic networks. Mol Syst Biol., 4, 168.



Design therapeutic strategies with networks in mind

Create a synthetic net
that restores the
function of the
malfunctioning one

Select which nodes to touch (inhibit with A e
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Biomarkers, for diagnosis/prognosis
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Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D. and Ideker, T. (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol., 3, 140.



Biomarkers, for diagnosis/prognosis
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Mellors, Theodore, et al. Clinical validation of a blood-based predictive test for stratification of response to tumor necrosis factor
inhibitor therapies in rheumatoid arthritis patients. (2020). Network and Systems Medicine. 3.1: 91-104.



Network-based patient stratification
(personalized medicine)
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Pai S, Bader GD. Patient Similarity Networks for Precision Medicine (2018). J Mol Biol. 430 (18 Pt A):2924-2938.

Hofree M, Shen JP, Carter H, Gross A, Ideker T. (2013). Network-based stratification of tumor mutations. Nat. Methods 10(11): 1108-15



Drug repositioning
It often takes 10—15 years of research and 0.8—1.5 billion dollars to bring a drug from abstract concept to

market-ready product [1]. Every year, ~90% of drugs fail during FDA evaluations, preventing their use in
actual therapy.

Drug repositioning (DR, aka d. repurposing, redirecting, retargeting, ...) seeks to find new uses for existing
drugs, with established and demonstrated human safety. Usually this involves finding new targets for

approved drugs.

Computational methods for DR include molecular docking, machine learning, literature mining, ... and

network-based approaches.
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Maryam Lotfi Shahreza, Nasser Ghadiri, Sayed Rasoul Mousavi, Jaleh Varshosaz, James R Green. (2018). A review of network-based
approaches to drug repositioning, Briefings in Bioinformatics, 19(5): 878-892,

Xiao-Ying Yan,ab Shao-Wu Zhang and Song-Yao Zhanga (2016). Prediction of drug—target interaction by label propagation with mutual
interaction information derived from heterogeneous network. Mol. BioSyst.,12, 520-531



Drug repositioning
COVID-19,

Expressed in lung
Not expressed in lung

ae

“We deployed algorithms relying on artificial intelligence, network diffusion, and network
proximity [...] to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. We
screened in human cells the top-ranked drugs, obtaining a 62% success rate. Of the six
drugs that reduced viral infection, four could be directly repurposed to treat COVID-19. We
also found that 76 of the 77 drugs that successfully reduced viral infection do not bind the
proteins targeted by SARS-CoV-2, indicating that these network drugs rely on network-
based mechanisms that cannot be identified using docking-based strategies.

Morselli Gysi, Deisy; do Valle, italo; Zitnik, Marinka; Ameli, Asher; Gan, Xiao; Varol, Onur; Ghiassian, Susan Dina; Patten, J J; Davey,
Robert A; Loscalzo, Joseph; Barabasi, Albert-Laszl6. (2021). Network medicine framework for identifying drug-repurposing
opportunities for COVID-19. Proc Natl Acad Sci U S A. 118(19):e2025581118.



Drug combinations
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Cheng, F., Kovacs, I.A. and Barabasi, A.-L. (2019) Network-based prediction of drug combinations. Nature communications, 10(1), 1197.



Other Networks used for studying human pathologies

Networks specifically generated for studying human pathologies

« Drug-target interactions (DTI) Apart from the “generic

«  Drug-drug interactions (based on chemical molecular networks
similarity, biological effect similarity, target(s) (interactome, metabolome, gene
similarity, ...) regulation, ...) some networks

* Drug-disease associations

. Drug-side effect associations were generated to specifically
« Disease-disease associations represent pathology-related
« Integrated (combined) networks information

Other networks used for studying human pathologies

» Social Networks
« Technological networks

Maryam Lotfi Shahreza, Nasser Ghadiri, Sayed Rasoul Mousavi, Jaleh Varshosaz, James R Green. (2018). A review of network-based
approaches to drug repositioning, Briefings in Bioinformatics, 19(5): 878-892,



Integrated networks
(aka. multipartite)

Including non-coding RNAs (ncRNA) in the network

A Protein coding gene miRNA gene

INncRNA gene

A Rheumatoid Arthritis B Crohn’s Disease
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“network pharmacology”
Drug-target network

L]
L -
L]
-’ . ®
o " sepne [ ] . - - . e ¢ *
. 7 & Metabolism
. g W T " * u ‘. ® Biood
. ™ % de M . ® Cardiovascular
. .y - .'.m . .» .. : :- » -. ., =\ .. ] Darmatological
[ - b n-r ..;.. L Ty "ty g " . R el .... ® Genito-urinary
. '. s g @ i g L . .l'. * N .. . ® Hormones
. * ADRAIA . o *, e . i % @ Anti-infectives
Blis ) o o - ! gRELceA — 5 . '_ - o ® Antineoplastics
-'.‘ . : Te it.‘ » g . - e @ . . . .' ® Musculoskelatal
. som' @ - L, : - .. . . ® Nervous system
P :. - ¥ = » . e . . [ ] Antiparasilic
[ ] oI — ‘._, . & . . \ @ Respiratory
- L) . @& Sensory organs
\ o ADREZ ", s @9 - . . s Lan®® o ® v ry org
. o8 0" s e, - anous
- - 3 - L * e =
LT - 20 T ] . » %
. ** . HRHI & CHAM . - .% CAEBFA1 — iy i
R [ ] ® . .; b 9 -I.‘ ’ ®
e, ..I :‘_l biaw ¥ LI e @ Membrang
£ ) £
ate o < 0 Swe e e I B hddd Cytoplasm
a_te -‘ LI e e : : - . a Exteror
o 178 « . . fewe . .0 % - . Organelles
L B b . .
-0 - . o L - s OFRMI .. )\ o Mucleus
R AN o " b ‘e " B Unknown
LY N ] - a-aa® . .' ™
e . . . ga”
- - . -
. o . .
L3 - ™
L ] L)
) - The, 30 LR N A o i.'.l LA o bt - ' = .
b . ome s “Sh-e- i '.. — ¥ o =i .3 '_":l Y em cenes 9w 9 )\
N .. . . | * * & e .
w L L . » 8 - g - - - - L. =’ -
o ¥ ¢ e ¢ e 0 @@ e e @ 8 . Bn it e e=g s
¥ il FAS L) . . , - » e . L PN - .
. a . N AP - - 4 - i . ol . ] ] 3 ¥ ¥ . -
. * v . - & w & w . ' * - . * * .‘ '-.,.- * pe . -- * ™ L L L L » ---l L L L]
.- . » - L] L] - - [ LI ] s =g o = 4 EEmE W - . L I LI ] LI L I - - - omme W -
e T I e I o I T T T — ™~ - mEm  Em - s =a ™ ™ ™ . =@="
- . . » =8 - . . . .- * . - - - .- - - o= - . - == -
L] - - L] ] . - L] L] L3 * L] L] L] - L] L L] LJ L Ld L] L

Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L. and Vidal, M. (2007) Drug-target network. Nat Biotechnol., 25, 1119-1126.



Summary

» Any phenomenon that can be modelled as entities linked by relationships can be
represented as a network and studied with the tools of Graph Theory.

* Many phenomena in different disciplines have been studied from this point of view,
including molecular phenomena as soon as the data required to assemble these
networks became available.

* Biological (molecular) networks are the prototypic subject of study of Systems
Biology, that focus on the complex network of relationships between components
instead of the components themselves, hence complementing the reductionist approach
of Molecular Biology.

» From the topological features of molecular networks, biological information related
to their functioning, resistance to perturbations, ability to transmit information, etc. has
been extracted.

» These network approaches are now being used to study and treat human pathologies.
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