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Establishing protein interaction networks is crucial for
understanding cellular operations. Detailed knowledge of the
‘interactome’, the full network of protein–protein interactions,
in model cellular systems should provide new insights into the
structure and properties of these systems. Parallel to the first
massive application of experimental techniques to the
determination of protein interaction networks and protein
complexes, the first computational methods, based on
sequence and genomic information, have emerged. 
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Abbreviations
i2h in silico two-hybrid
MSA multiple sequence alignment

Introduction
The molecular bases of cellular operations are largely
sustained by different types of interactions among proteins.
However, only recently has it become possible to combine
the traditional study of proteins as isolated entities with
the analysis of large protein interaction networks. This is of
particular interest as many of the properties of complex
systems seem to be more closely determined by their
interactions than by the characteristics of their individual
components. Furthermore, recent findings — including
the fact that Caenorhabditis elegans and humans have a
similar number of genes, and the marked similarity in the
sequences of human and mouse genes — suggest that
species differences cannot be accounted for by the
individual properties of their component genes, but rather
by the relationships between them. The study of protein
interaction networks is important not only from a theoretical
stance but also in terms of potential practical applications,
because it might enable new drugs to be developed that
can specifically interrupt or modulate protein interactions,
instead of simply targeting a given protein’s complete set
of functions.

An impressive set of experimental techniques has been
developed for the systematic analysis of protein inter-
actions, including yeast two-hybrid-based methods [1],
identification by mass spectrometry of isolated protein
complexes [2•,3], protein chips [4•] and hybrid approaches
[5]. The aim of all of these techniques is to obtain the
full protein interaction network for simple cellular 

systems, such as yeast [2•,3,6••,7••] and Helicobacter pylori [8•].
And, although the limits of resolution of these approaches
are open to discussion [9,10••], they do nevertheless promise
much for the future.

In parallel, a number of computational methods have been
developed for the prediction of protein interactions from
genomic information [11,12•], extending into the prediction
of the residues that participate in the interacting surfaces.
Here, we describe the five computational techniques
available for the prediction of interaction partners and
examine their range of applicability. In addition, we analyze
new trends in the determination of interacting surfaces on
the basis of sequence information. 

Computational methods for the prediction of
interaction partners
Presence or absence of genes in related species
This method is based on the pattern of the presence or
absence of a given gene in a set of genomes, that is, 
determining in which organisms the gene is present and
in which it is not (phylogenetic profiles method; Figure 1a).
Similarity of phylogenetic profiles might then be interpreted
as being indicative of the functional need for corresponding
proteins to be simultaneously present in order to perform a
given function together. However, although this similarity
may suggest a related functional role, a direct physical
interaction between the proteins is not necessarily implied
[13,14]. The main limitations of this approach lie in the
fact that it can only be applied to complete genomes (as
only then is it possible to rule out the absence of a given
gene). Similarly, it cannot be used with the essential
proteins that are common to most organisms.

Conservation of gene neighborhood 
The organization of bacterial genomes into regions that
tend to code for functionally related proteins, such as operons,
is a well-known fact. This neighborhood relationship
becomes even more relevant when it is conserved in
different species [15]. The adjacency of genes in various
bacterial genomes has been used to predict functional
relationships between the corresponding proteins [16,17]
(Figure 1b).

One of the main limitations of this method is that it is only
directly applicable to bacteria, in which the genome order
is a relevant property.

Gene fusion events
Interactions between proteins can be deduced from the
presence in different genomes of the same protein
domains, which either form part of a single polypeptide
chain (multidomain protein) or act as independent proteins
(single domains) (Figure 1c). Methods based on recursive
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sequence searches and multiple sequence alignments (MSAs)
have been combined in order to detect such domain fusion
events [18,19]. It has also been shown that fusion events
are particularly common in metabolic proteins [20]. By
definition, this approach is restricted to shared domains in
distinct proteins, a phenomenon whose true extent is still
unclear [21], especially in prokaryotic organisms.

Similarity of phylogenetic trees (mirrortree)
In a number of closely studied cases, it has been possible
to show that interacting protein pairs co-evolve, for example,
insulin and its receptors [22], and dockerins and cohexins
[23]. In such cases, the corresponding phylogenetic trees of
the interacting proteins show a greater degree of similarity
(symmetry) than noninteracting proteins would be 

Figure 1
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Methods for predicting protein interaction partners from genomic and
sequence information. The methods are presented according to the
amount of information they include, ranging from simple patterns of
gene presence in genomes to detailed sequence information (amino
acids in each position) in protein families. (a) Phylogenetic profiles
[13,14]. A profile is constructed for each protein (Prot a–Prot d),
recording its presence (1) or absence (0) in a set of organisms
(Org 1–Org 4). Pairs of proteins with identical (or similar) phylogenetic
profiles are predicted to interact (Prot a and Prot c in this case).
(b) Conservation of gene neighborhood [16,17]. Proteins whose
genes are physically close in the genomes of various organisms are
predicted to interact (Prot a and Prot b). (c) Gene fusion [18,19]. Two
proteins of a given organism (Prot a and Prot b of Org 1) are predict to
interact if they form part of a single protein in other organisms (Org 2).
(d) Similarity of phylogenetic trees (mirrortree) [24•,25•]. To obtain a
quantitative indicator of the interaction between two proteins (Prot a
and Prot b), the MSAs of both proteins are reduced to the set of

organisms common to the two proteins (Org 1–Org 5). Each of the
reduced alignments is used to construct the corresponding
intersequence distance matrix. These matrices are commonly used to
construct the corresponding phylogenetic trees. Finally, the linear
correlation between these distance matrices is calculated. High
correlation values are interpreted as indicative of the similarity between
phylogenetic trees and hence are taken as predicted interactions.
(e) Correlated mutations (i2h) [31•]. The first step (reduction of the
MSAs to a set of common organisms) is the same as that described
for the mirrortree method (d). A correlation coefficient is calculated for
every pair of residues. The pairs are divided into three sets: two for the
intraprotein pairs (Caa and Cbb; pairs of positions within Prot a and
within Prot b) and one for the interprotein pairs (Cab; one position from
Prot a and one from Prot b). The distributions of correlation values are
recorded for these three sets. The ‘interaction index’ is calculated by
comparing the distribution of interprotein correlations with the two
distributions of intraprotein correlations [31•].
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expected to show. For the two domains of phosphoglycerate
kinase, Goh et al. [24•] quantified the similarity of their
phylogenetic trees as the linear correlation between the
distance matrices used to construct the trees. This approach
(the mirrortree method) was extended [25•] to large sets of
interacting proteins and protein domains, for which the
value of the correlation between the distance matrices of
pairs of proteins was found to be a good indicator of their
probability of interaction (Figure 1d).

It seems that the process of co-evolution could lead, in the
limit, to the simultaneous loss of both proteins in some
organisms, an observation that forms the basis of the
phylogenetic profiles method discussed above (Figure 1a).
To this extent, the ‘phylogenetic profiles’ method might
be considered a simplification of the mirrortree procedure,
as the former does not take the structure of the trees (length
and order of the branches) into account in the same way as
the mirrortree method does by analyzing the information
implicit in the protein sequence distance matrices.

The main limitation of the mirrortree method is the need to
obtain good quality, complete MSAs for the two proteins.
These alignments should include sequences from the same
species for the two proteins under consideration (Figure 1d).

In silico two-hybrid method 
The co-evolution of interacting proteins can be followed
more closely by quantifying the degree of co-variation
between pairs of residues from these proteins (correlated
mutations). These positions may correspond to compensatory
mutations that stabilize the mutations in one protein with
changes in the other. Information about correlated mutations
in single proteins has been used in particular to predict
proximal pairs of residues [26,27], to discriminate structural
models derived by threading [28] and to drive ab initio
folding simulations [29].

For certain proteins, correlated mutations have been
demonstrated to be able to select the correct structural
arrangement of two proteins based on the accumulation of
signals in the proximity of interacting surfaces [30]. This
relationship between correlated residues and interacting
surfaces has been extended to the prediction of interacting
protein pairs based on the differential accumulation of
correlated mutations between the interacting partners
(interprotein correlated mutations) and within the 
individual proteins (intraprotein correlated mutations)
[31•] (Figure 1e).

As in the case of the mirrortree method, the main limitation
of the in silico two-hybrid (i2h) approach is the need for
complete alignments with a good coverage of species
common to the two proteins under study. This limitation
arises as a direct consequence of the hypothesis of co-
evolution, which naturally requires the simultaneous study
of the corresponding protein pairs in each genome. On a
more positive note, however, this method, based on the

compensatory mutation of residues that are expected to
lie physically close to each other, should provide a better
prediction of physical interactions than the other methods
(Figure 1a–d), which are based on general genomic
information and tend to mix direct physical and indirect
functional relationships.

Comparison of the computational methods
Unfortunately, a definitive evaluation of any of these
methods cannot yet be undertaken, because the availability
of collections of interacting proteins is still highly limited
(as is an accurate understanding of those proteins that do
not interact). Current efforts to develop databases of 
protein interactions [32•,33,34•] and to establish standards
for the exchange of information between these databases
(e.g. ‘Intact’ project, EC V Framework Program;
http://www.ebi.ac.uk:80/msd/Temblor/Temblor1.html)
will, however, play a key role in the evolution of 
prediction techniques.

Complementary to these efforts, various data-mining 
procedures are emerging for the automatic extraction of
information about protein interactions from the vast
amount of accumulated bibliographic information (for a
review, see [35,36]). Although these systems face con-
siderable technical challenges — including the absence
of standard protein and gene names, and the complexity
of the functional relationships between interacting 
proteins — they are already starting to provide evidence of
their capabilities.

Before this large collection of well-documented interactions
becomes available, current efforts at evaluation must be
based on general functional characteristics, such as key
words describing function, class of cellular function and so
on, which provide very little information about protein
interactions and are, in fact, more closely concerned with
functional relationships. A further aspect that concerns us
is the degree of coverage the prediction methods can
provide of the possible set of interactions, though their
actual extent is still unknown. Huynen et al. [12•] compared
the three methods based on genomic information
(Figure 1a–c). In their analysis, the method based on gene
order (Figure 1b) could be applied to 37% of the
Mycoplasma genitalium genes, whereas the phylogenetic
profiles method (Figure 1a) and the method based on gene
fusion (Figure 1c) could only be applied to 11% and 6%,
respectively. The combination of the three methods
yielded predictions for 50% of M. genitalium genes, with
just a small degree of overlap in the techniques. With respect
to the accuracy of this test set, the percentage of pairs 
predicted by the three methods that either present a physical
interaction, belong to the same macromolecular complex,
form part of the same pathway or are implicated in the
same process are: 78% for ‘gene fusion’ (with no false
positives), 80% for ‘conservation of gene order’ and 63%
for ‘phylogenetic profiles’. The percentages for physical
interactions only are 56%, 30% and 23%, respectively.



Computational methods for the prediction of protein interactions Valencia and Pazos    371

Recently, the phylogenetic profiles, mirrortree and i2h
methods (Figure 1a,d,e) were applied to the Escherichia coli
genome (D De Juan, F Pazos, A Valencia, unpublished
data). Starting with 38 fully sequenced genomes for building
the orthologous tables and MSAs, and requiring a minimum
of 14 common sequences for mirrortree and i2h, it was
possible to apply the methods to a common set of more
than 480 000 pairs of proteins, which covers 1318 genes
(more than 30% of the 4289 E. coli genes). The preliminary
results show that these three methods are independent
and that there is a relationship between each one of their
scores and the possibility of physical or functional inter-
action, measured as coincidence of Swiss-Prot keywords or
copresence in metabolic pathways.

Prediction of the molecular basis of protein
interactions
Activity to develop computational methods that can 
predict interactions between proteins of known three-
dimensional structure (the docking problem, see [37•] for
a recent review) has been intense. These docking methods,
however, are only applicable to the small fraction of 
complexes for which the structures of the two interacting
proteins are known. Interestingly, a set of new computational
methods can now address the problem of the prediction
of interacting surfaces in the absence of complete
information about the corresponding structures of the
binding proteins.

Initial approaches have been based on the observed 
properties of the statistical composition of interacting 
surfaces in terms of residue types (polarity, charge, etc.)
and on the structure of the surfaces [38–40]. Two recently
published methods [41•,42•] encode some of these charac-
teristics in neural networks in order to predict binding
regions in individual proteins of known structure. The
accuracy of these methods is around 70% for the prediction
of interactions at the residue level.

A second type of method addresses the prediction of
interacting residues in the absence of structural infor-
mation. The first reported application determines the
distribution of positions that show family-dependent
patterns of conservation in MSAs (‘tree determinants’
[43]). The relationships between these positions and
the binding surfaces have been demonstrated for a
number of systems [43–47], and the resulting predictions
have been experimentally validated in at least two 
cases [48,49].

A promising alternative to that described above is the use
of information about correlated mutations in order to 
highlight the interaction sites in binding proteins. In this
case, it is possible to interpret the information used to 
predict interacting partners (i2h method; Figure 1e) in
terms of the physical proximity between pairs of positions
subject to evolutionary compensation on the surface of
interacting proteins [30].

Conclusions
Cellular function can only be understood by considering
the individual properties of cellular components (proteins,
genes, etc.) in the context of their complex relationships. It
is therefore unsurprising that the study of these inter-
actions and complexes is establishing itself as the main
task in the ‘post-genomic’ era [50].

By calling on the accumulation of genomic information, the
first computational techniques for predicting protein inter-
action networks are emerging. The five methods described
here are based on a wide range of ideas and, although they
are yet to be perfected, they should prove to be more than
competent complements to the various experimental
approaches already developed for the determination of
interactions, particularly given the shortcomings that also
exist for these experimental methods [9,10••].

The combination of experimental and theoretical data
could, for the first time, provide complete information
about interaction networks, thereby allowing studies to be
undertaken of the distribution and number of interactions,
the presence of key nodes in the networks, tolerance to 
perturbations and differences in network organization from
one organism to another. Indeed, initial analyses of these
networks have revealed interesting new properties of 
biological interaction networks [51•,52•,53], which may have
major practical consequences for the design of new drugs
and constitute the foundations of the new ‘system biology’.

Update
Aloy and Russell [54] have proposed a method for predicting
the specificity of interactions in families of interacting
proteins. Their approach is based on the structure of
homologous complexes and relies on the concept of tree
determinants described previously [43–49].

Sprinzak and Margalit [55] analyzed the distribution of
well-characterized sequence domains in interacting protein
pairs. This information is used to search for putative new
interacting pairs with similar domain composition. 

Fraser et al. [56] have quantified the relationship between
evolutionary rates, fitness and sequence co-evolution in a
large set of experimentally proposed yeast interaction 
networks. Their statistical approach shows that the more
connected nodes in the interaction network evolve at
lower rates, possibly because they are subject to a stronger
pressure to co-evolve with their interaction partners. This
study lays the evolutionary foundation for the methods
described in [25•,31•].
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