

Transcription Regulation

- Interaction between a protein and a specific sequence in the DNA
- The set of proteins that binds the promoter region of a gene will determine its expression
 - In which tissue
 - En which developmental phase
 - Under which environmental conditions
 - etc.

Sources of high throughput experimental data

- Chip-on-Chip
- STAGE/SABE
- DNA-arrays
- Prediction
- Text-mining

Chip-On-Chip II

- PCR Arrays
 - low resolution
- Oligo Array
 - very expensive
- Normally only regions around genes are included

Issues

- Depends on the experimental conditions
 - good: context
 - bad: we can not cover all conditions
- We know TF are bound, but don't know if they are active, or how they affect gene transcription

Prediction

- "pattern matching", "pattern discovery"
- Noisy, lots of false positives
- Only Binding sites are predicted, no the time or the conditions, or the action.
- They can be combined with high-throughput experiments.

Pattern Matching

- Know Sites: "Pattern Matching"
 - We known the pattern a TF is binding:
 - want to know where in the genome
- Unknown Sites: "Pattern Discovery"
 - We know a set of genes that are co-regulated?
 - can we predict the DNA sequences involved?

- How to describe a set of binding sites
 - Consensus sequence
 - patterns
 - weight matrices (PSSM)

17

ATCGTGCTATAGGTAAGT ATCGTGGTATACGTAAGT ATCGTGCTTTAGGTAAGA ATCCTGCTATTGCTAAGT

ATCGTGCTATAGGTAAGT

Consensus Sequence

ACGTA

CGACGTAGATGACCTACGGATGCACGAACG CGACGTAGATGACCTACGGATGCACGAACG CGACGTAGATGACCTACGGATGCACGAACG CGACGTAGATGACCTACGGATGCACGAACG

Matrices

 A
 T
 C
 G
 T
 A
 G
 T
 A
 G
 T

 A
 T
 C
 G
 T
 G
 T
 A
 G
 T

 A
 T
 C
 G
 T
 A
 A
 G
 T

 A
 T
 C
 G
 T
 A
 G
 T
 A
 G
 T

 A
 T
 C
 G
 T
 G
 C
 T
 A
 G
 A
 G
 A

 A
 T
 C
 C
 T
 G
 C
 T
 A
 G
 T

 A
 T
 C
 C
 T
 G
 C
 T
 A
 G
 T

 A
 T
 C
 C
 T
 G
 C
 T
 A
 G
 T

 A
 T
 C
 C
 T
 A
 T
 T
 C
 T
 A
 G
 T

 A
 T
 C
 C
 T
 A
 T
 T
 T

A T G G C T C G A T T G G T A T G T 4+4+0+3+0+4+3+0+3+4+1+3+3+4+4+0+4+3=47

T A G C C A G T T T A T T A G C G T 0+0+0+1+0+0+3+4+1+4+3+0+0+0+0+0+4+3=23

21

Special Binding Sites

- Promoters
 - <u>http://www.fruitfly.org/seq_tools/promoter.html</u>
 - http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb
 - <u>http://www.cbs.dtu.dk/services/Promoter/</u>
- Terminators
 - http://www.softberry.com/berry.phtml?topic=findterm&group=programs&subgroup=gfindb

TRANSFAC

- Transcription Factors, binding sites and their matrices (eukaryots)
 - Other realted resuources
 - PathoDB: a database on pathologically relevant mutated forms of transcription factors and transcription factor binding sites
 - S/Mart:collects information about scaffold/matrix attached regions and the nuclear matrix proteins
 - Transcompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes
 - More...

http://www.gene-regulation.com/

RegulonDB

- Transcription Factors, binding sites and operons in *E. coli*
- Visualization and analysis tools
- •Integrated in Ecocyc (www.ecocyc.org)

http://www.cifn.unam.mx/Computational_Genomics/regulondb/

Computational Biology and Bioinformatics-CSHL

- TRED: Human and mouse
- CEPDB: C. elegans
- SCPD:Yeast
- Promoters, TF binding sites & matrices

http://rulai.cshl.edu/software/index1.htm

Co-regulated Genes

• Microarrays

- Any other association:
 - Same metabolic Pathway
 - Same functional Class
 - Similar names

Finding Unknown binding sites

- A set of (supposedly)co-regulated genes
- Take their promoter region
 - Bacteria: 50-300 bp of intergenic region
 - •Eukaryot: 1000 4000 bp
- Search what they have in common

phylogenetic footprints

- •Use a set of orthologous genes
- Regulation and binding sites are conserved
 - Organisms to far apart: no conservation
 - Organisms to close: sequences haven't diverged enough

Over-represented Motives

- Count the frequency of each n-length word
- Find the word significantly more abundant in our sequence set
- you need a good *background* (HMM)

Over-represented Motives

Word (n=5)	expected	Observed
ААААА	2	3
AAAAC	3	2
AAAAG	5	3
ATGCA	13	17
ATGCC	15	75
ATGCG	17	14
TTTTG	5	3
TTTTT	2	0

4⁵=1024, but...

412=16.777.216

Gibbs Sampling		
Align randomly ACGTAGGATC ACGTAGCAGT ACGGATGCGA ACGTAGCGTA Repeat until stable ACGTAGCAGT ACGTAGCAGT ACGTAGCAGT ACGTAGCAGT ACGTAGCGA	ACGTAGGTTC ACGTAGCAGT ACGGATGCGA ACGTAGCGTA \downarrow swap for the best possible one ACGTAGGATC ACGTAGCAGT ACGGATCCGA ACGTAGCGTA	
	41	

- Degree (k)
- Degree distribution (k/p(k))
- Degree exponent (Y)
- Shorter Paths (/)
- Average Lenght of the paths (</>
- Clustering coefficient (c)
- Average Clustering Coefficient (<c>)

Scale Free Network

- $\ensuremath{\bullet}$ hubs, highly connected nodes, bring together different part of the network
- Rubustness: Removing random nodes have little effect
- Low attack resistance: Removing a hub is lethal.

Random Netwok

- No hubs
- Low robustness
- Low attack resistance

Different Networks are active under different conditions

Summary

- Building regulatory networks from experiments is tedious and expensive... but it can be done.
- Computational methods are noisy and generate many false positives.
- Two main questions:
 - Pattern matching
 - Pattern Discovery (phylogenetic footprint)

Identification of Transcription Factor Binding Sites

- Go to: http://rsat.scmbb.ulb.ac.be/rsat/
- Misc>Tutorials
- I. Sequence retrieval
- 3. Pattern Matching
 - 2 patser
- 4. Patten Discovery
- I.I oligo-analysis
- 2.1 Gibbs Motif Sampler
- 4.3 Microarrays

Summary II

- Regulatory Networks are directed. Outgoing connectivity follows a power law, but not the incoming one
- The network is scale-free and small world
 - Robust and good for signal integration
- The network could have grown by duplication, but there are some contradictory evidences
- Regulatory motives are specific and provides some convenient properties. Motives are under strong selective pressure.
- The network is dynamic. Different stimuli require different networks with different properties.

74

75