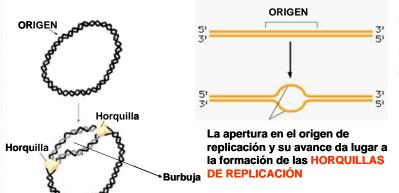


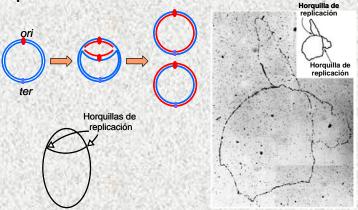
Empaquetamiento del DNA en el núcleo

Asociación del DNA_{dh} a proteínas

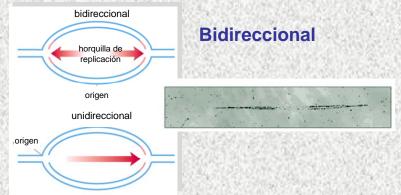
■ H3 ■ H4

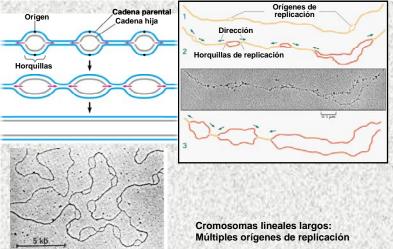

Courtesy of Timothy Richmond, Eidgenössische Technische Hochschule, Switzerlan

Asociación de DNA a topoisomerasa


Nucleosoma

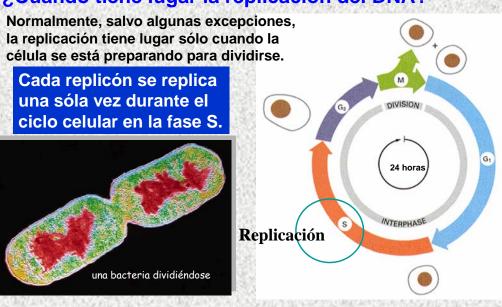
¿Dónde se inicia la replicación a lo largo de la molécula de DNA?


La iniciación de la replicación tiene lugar en sitios concretos de la molécula de DNA: ORÍGENES DE REPLICACIÓN.



Las células procariotas tienen un único origen de replicación.

Cromosomas circulares: Normalmente un único origen de replicación



REPLICÓN: Unidad de replicación del DNA

- Un replicón es: todo el DNA del fago, cromosoma procariota, virus, plásmido
- En eucariotas hay tantos replicones como orígenes de replicación

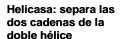
¿Cuándo tiene lugar la replicación del DNA?

PROTEÍNAS DE LA HORQUILLA DE REPLICACIÓN DE E. coli

proteína

función

Relleno de huecos, exciscebadores


SSB Unión al DNA hebra simple
helicasa Apertura de la doble hélice
primasa Síntesis del RNA cebador
DNA polimerasa III Elongación de las hebras copia

DNA ligasa ligación

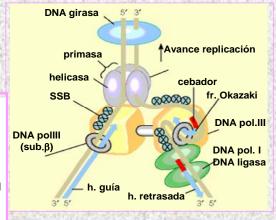
DNA girasa (DNA topoisomerasa) Superenrollamiento

Dna polimerasa I

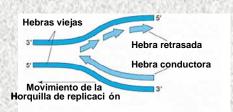
Proteínas de unión que estabilizan el DNA monocatenario lineal

Primasa: sintetiza el fragmento de RNA cebador

DNA polimerasa III: une nucleotidos para formar las nuevas hebras


DNA polimerasa I (Exonucleasa) elimina el RNA cebador y inserta las bases correctas

Ligasa une los fragmentos de Okazal y sella otras posibles rupturas.


REPLISOMA:

UNA COMPLEJA MAQUINARIA DE REPLICACIÓN

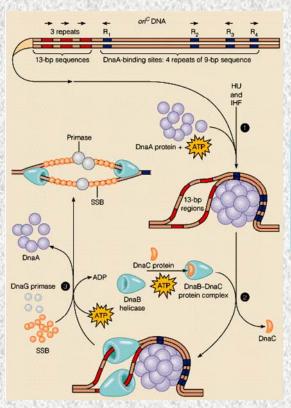


La cadena se sintetiza en la dirección 5' --- 3'

En el proceso de replicación se requiere la participación y ensamblaje, en la horquilla de replicación, de un conjunto de proteínas con funciones distintas.

Requieren un 3'- OH libre para elongar

Molde: DNA de cadena sencillo extendido



Helicasa:

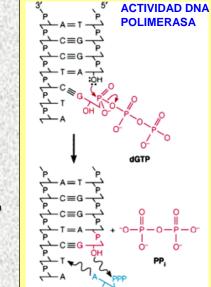
separa las dos cadenas de la doble hélice, rompe los puentes de hidrógeno, requiere ATP

Proteínas de unión a DNA monocatenario lineal(SSB) :estabilizan el DNA monocatenario lineal impidiendo que se forme de nuevo la doble hélice

INICIACION: reconocimiento de una secuencia específica

DnaA + ATP reconoce el sitio *OriC*Se produce el desenrollamiento del DNA
La helicasa sigue desenrollando a partir de ese punto
SSB se une al DNA para estabilizarlo
La primasa sintetiza el RNA cebador

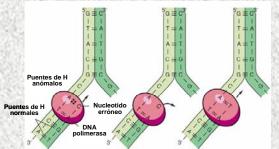
En la elongación intervienen las DNA polimerasas


DNA POLIMERASAS

Dos requisitos: VELOCIDAD Y FIDELIDAD

enzimas esenciales en la replicación necesitan cebador actividad correctora de errores (exo 3'→5')

Tipos en procariontes:


DNA polimerasa I DNA polimerasa II DNA polimerasa III replicación y reparación reparación replicación

Tres etapas
INICIACIÓN
ELONGACIÓN
TERMINACIÓN

FIDELIDAD DE LA REPLICACIÓN

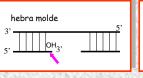
Especificidad del emparejamiento de las bases

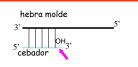
Añaden nucleotidos con una frecuencia de error aproximada de 1 nucleotido incorrecto por cada 1000 nucleotidos

Frecuencia muy elevada

Corrección correctora: Actividad exonucleasa 3' --- 5'

La frecuencia de errores desciende como mínimo a 1 nucleotido incorrecto por cada millón de nucleotidos añadidos


ENZIMA	Dominio sintético	Dominio corrector	Tasa de	e error
			Sin corrección	Con corrección
DNA polimerasa I, E. coli	aa 200-600	N-terminal	10-5	5 x 10 ⁻⁷
DNA polimerasa III, E. coli	subunidad α	subunidad ε	7 x 10 ⁻⁶	5 x 10 ⁻⁹
DNA polimerasa I, T4	C-terminal	N-terminal	5 x 10⁻⁵	10 ⁻⁷
DNA polimerasa I, T7	?	118-145	10 ⁻⁵	10 ⁻⁶
Transcriptasa inversa		ninguno	10-4	-


DNA Polimerasa III

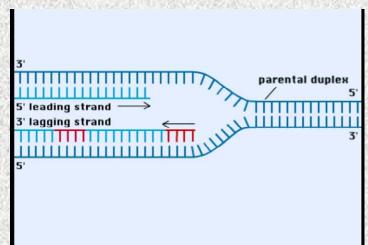
Responsable de la replicación in vivo: actividad replicasa

Molde con hueco grande

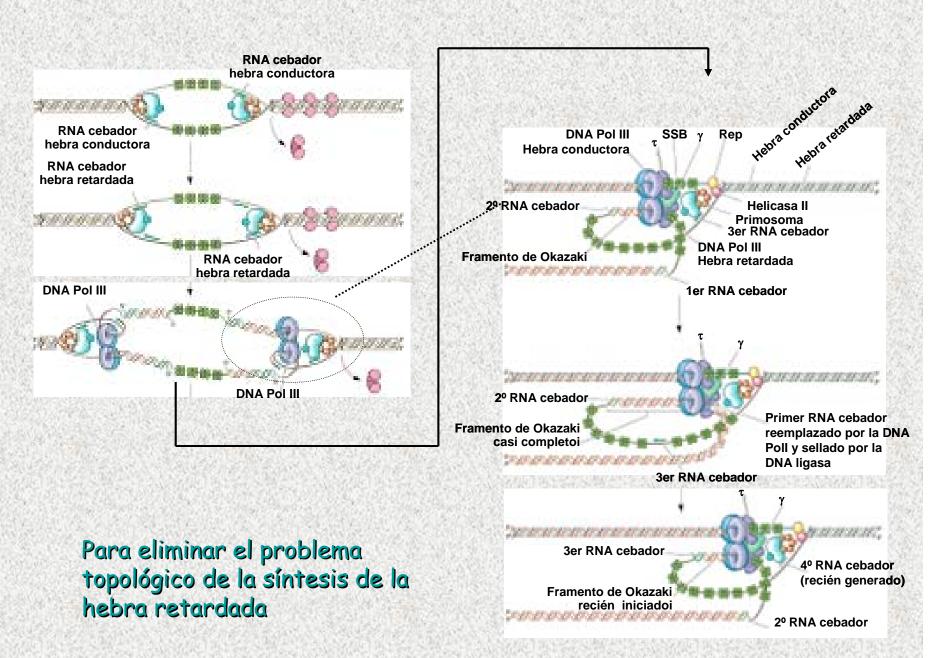
Molde cebado

Organización: Dímero asimétrico

Subunidad α: actividad polimerasa 5'---3'
Subunidad ε: actividad exonucleasa 3'----5'
Subunidad τ: responsable de la dimerización
Subunidad β: componente de procesividad
Complejo γ: aumenta de procesividad

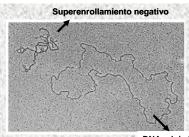

Enzima multimérica constituida

por distintas subunidades: Holoe<mark>nzima</mark> al menos 10 subunidades

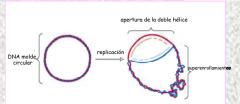

La carga de la pinza se produce sólo una vez por turno de replicación sobre la cadena conductora.

En la cadena retardada, la polimerasa debe unirse de nuevo en la iniciación de la síntesis de cada fragmento de Okazaki y debe disociarse cuando se alcanza el extremo 5' de la cadena hija de DNA ya existente.

REPLICACIÓN DNA EN E. coli

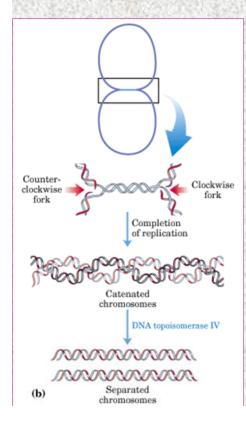


□ DNA BICATENARIOS LINEALES


Rotación de la hélice progenitora sobre su eje. Cadenas largas: problema mecánico

☐ DNA CIRCULARES

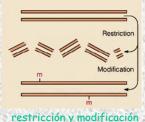
Según avanza la horquilla, el segmento de DNA por delante abandona el superenrollamiento negativo e incluso pasa a tener un superenerollamiento positivo, lo que dificulta el avance

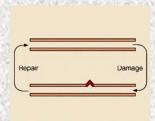

DNA

DNA TOPOISOMERASAS

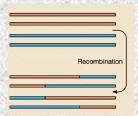
Alteran el grado y tipo de superenrollamiento del DNA

- Facilitan el avance de la horquilla de replicación
- Permiten la separación o la creación de DNA circulares entrelazados
- Eliminación de nudos o enredos en DNA lineales muy largos
- Esenciales en replicación, transcripción y recombinación

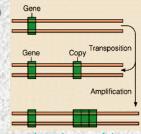

Terminación


TERMINACIÓN

papel de las topoisomerasas

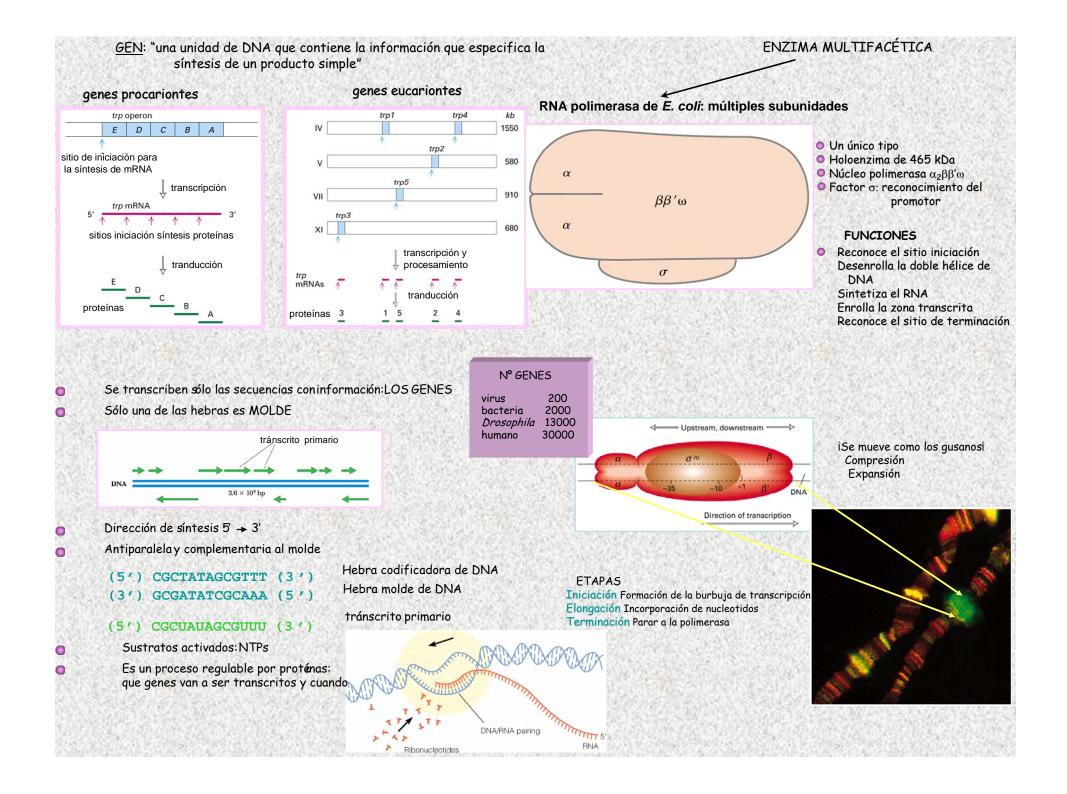


restricción y modificación protección celular y útil en la tecnología del DNA recombinante


mutagénesis y reparación

respuestas metabólicas a lesiones del DNA

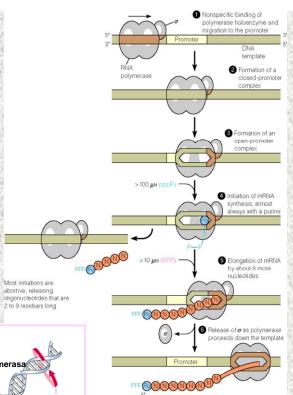
recombinación génica


redistribución de los contenidos de un genoma, p.ej, durante la reproducción sexual

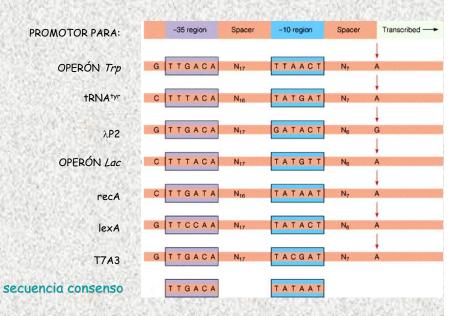
reordenamientos génicos

transposiciones de segmentos de DNA de un cromosoma a otro amplificación génica aumento del número de copias

de un fragmento de DNA



INICIACIÓN

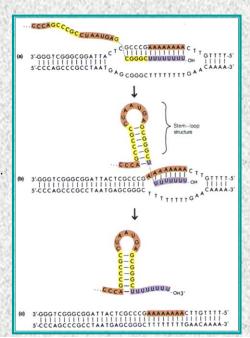

¿cómo sabe la RNA polimerasa donde iniciar la síntesis?

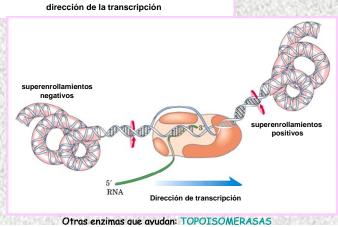
El factor o

- Unicamente la holoenzima puede iniciar la transcripción
- El factor σ asegura la unión al promotor
- Variedad de factores activados por factores ambientales
- Una iniciación/s

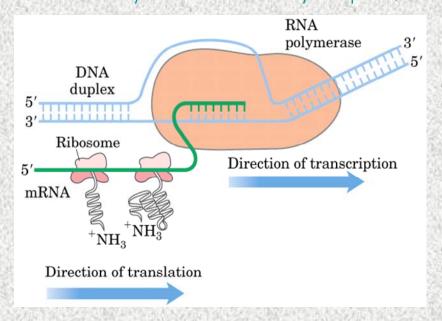
ANATOMIA DE UN PROMOTOR

hebra codificadora RNA polimerasa enrollado desenrollado hebra molde RNA-DNA RNA / híbrida (8pb) centro activo

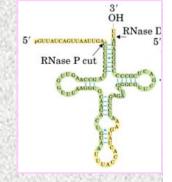

Burbuja de transcripción


TERMINACIÓN

Ricas en G-C Formación de est.2ª en horquilla 6 residuos U al 3'

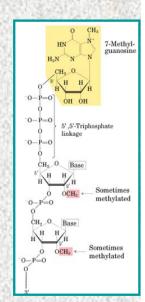

...a veces se necesitan proteínas como...

la proteína rho



En una bacteria: transcripción-traducción acoplada, no hay núcleo En una c. eucarionte: hay maduración del mRNA y transporte fuera del núcleo

 Se eliminan secuencias terminales

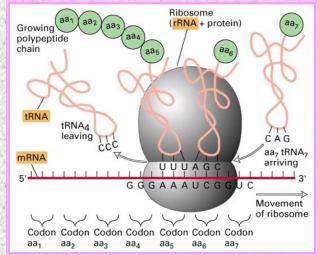


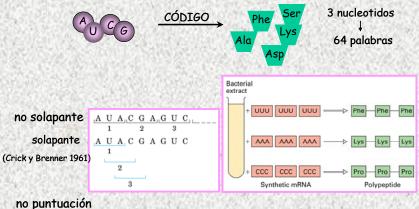
 Se eliminan secuencias internas que no contienen información: INTRONES

 La eliminación puede ser catalizada por el propio intrón: RIBOZIMAS

• Se modifican las bases nitrogenadas

TRNA


Primary transcript	Intermediate	Mature tRNA ^{Tyr}
3′	3′	3′
OH	ОН	ОН
RNase D cut	CCA	ĝ
5' rdunucaguunauuga 5' cleavage ad	dition 5' 16-0	5′ ⊮ 8_ Q
RNase P cut 3' cleavage	9 9	9-8
evo. G-Screenevo A	DDG. GCCCCUCMA	n Do. GCCCCCU C MA
G AACCG A GGGCG D C	G AAGG GGGCG G	G AAGGC GGGCG
Base modifica	ation DDD MC GAGN Spli	cing opposed C-gag
8=8	å=c	8 -8
6	8	if A
8 8	g ca	G a A
A ^{A-U} C.	A U	


Tres tipos de RNA participan en el proceso de traducción

mRNA transporta la información genética según un código. Palabras de tres bases MOLDE

tRNA es la clave para decifrar las palabras del código ADAPTADOR

rRNA se asocia con proteínas para formar los ribosomas LOCALIZACIÓN

CÓDIGO GENÉTICO

2º LETRA DEL CODÓN

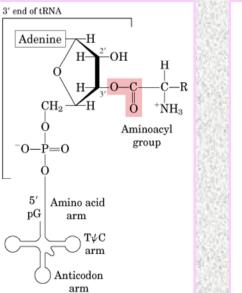
	8	U		$^{\rm C}$		Α	1		G
1° L	U	UU U UU C	Phe Phe	UC U UC C	Ser Ser	UAU UAC	Tyr Tyr	UG U UG C	Cys Cys
E	U	UUA UUG	Leu Leu	UCA UCG	Ser Ser	UAA UAG	Stop Stop	UGA UGG	Stop Trp
R A	C	CU U	Leu Leu	CCU CCC	Pro Pro	CAU CAC	His His	CGU CGC	Arg Arg
D E		CUA CUG	Leu Leu	CCA CCG	Pro Pro	CAA CAG	Gln Gln	CGA CGG	Arg Arg
Ĺ	Α	AU U AU C	Ile Ile	ACU ACC	Thr Thr	AAU AAC	Asn Asn	AGU AGC	Ser Ser
C O		AUA AUG	Ile Met	ACA ACG	Thr Thr	AAA AAG	Lys Lys	AGA AGG	Arg Arg
DÓ	G	GU U GU C	Val Val	GC U GC C	Ala Ala	GAU GAC	$_{\rm Asp}^{\rm Asp}$	GG U GG C	Gly Gly
N		GUA GU G	Val Val	GCA GC G	Ala Ala	GAA GAG	Glu Glu	GGA GG G	Gly Gly

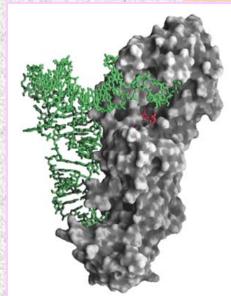
Sinónimos: GCU, GCC Iniciador: AUG

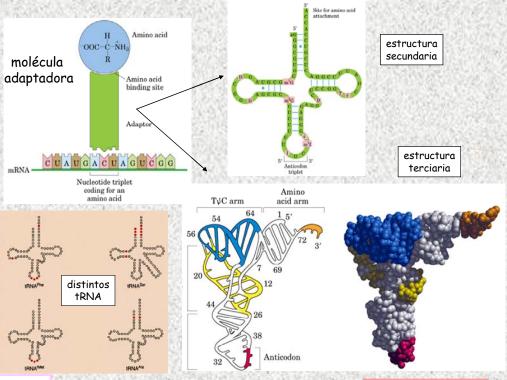
Terminador: UAA,UAG,UGA

degenerado

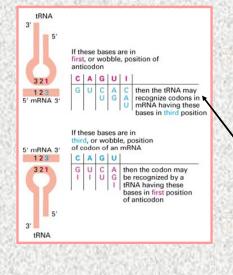
Degeneracy of the Genetic Code

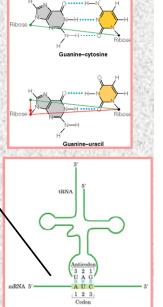

8,		
Amino acid	Number of codons	
Ala	4	5'U U C U C G G A C C U G G A G A U U C A C A G U3'
Arg	6	U U C U C G G A C C U G G A G A U U C A C A G U
Asn	2	U U C U C G G A C C U G G A G A U U C A C A G U
Asp	2	U U U U U U U U U U U U U U U U U U
Cys	2	
Gln	2	es marcos de lectura posibles: UNO SÓLO VÁLIDO
Glu	2	
Gly	4	항로 병과 사람들은 경험을 보면하고 있으면 생각이 있어요. 회원들은 하고 생각하는 것이 없고 있다.
His	2	하는데 하는데 생각을 하는데 그리고 있다면 모양하는데 생각을 하는데 그리고 있다면 하는데 생각을 하는데 그리고
lle	3	mRNA 5'GUAGCCUACGGAU3'
Leu	6	(+)
Lys	2	inserción G U A G C C U C A C G G A U 5' CCU UGU UUA CGA AUU A - MRNA
Met	1	INSERCION G U A G C C U C A C G G A U 5' GCU UGU UUA CGA AUU A- MRNA
Phe	2	Ala Cys Leu Arg IIe Polypeptide
Pro	4	deleción G U A C C U A C G G A U
Ser	6	(†) (†) (†)
Thr	4	serción y G U A A G C C A C G G A U 5' G CUU GUU UAC GAA UUA
Trp	1	delection
Tyr	2	Reading frame restored — Leu Val Tyr Glu Leu
Val	4	

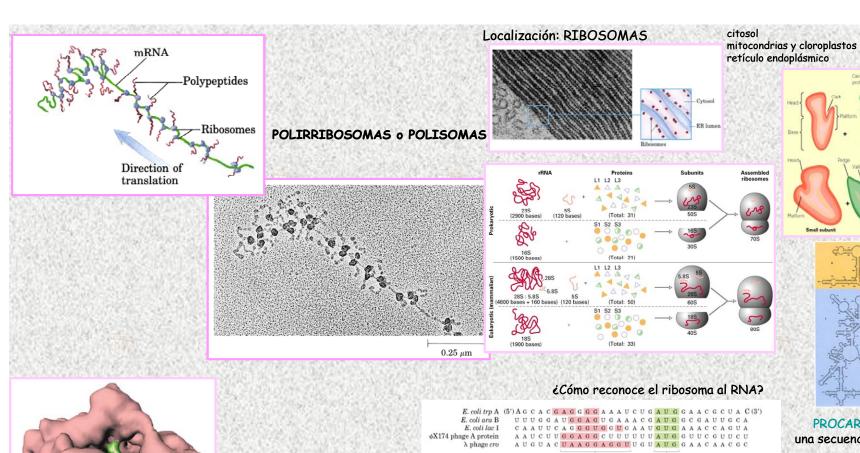

Mutaciones alteran el marco de lectura

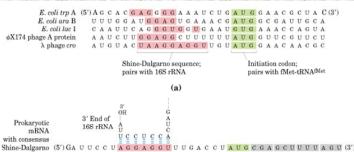

El código genético es casi universal

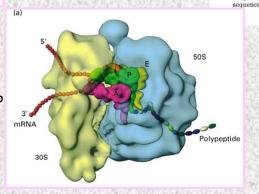
Codon	Usual Use	Alternate Use	Where Alternate Use Occurs
AGA AGG	Arg	Stop, Ser	Some animal mitochondria, some protozoans
AUA	Ile	Met	Mitochondria
CGG	Arg	Trp	Plant mitochondria
CUU CUC CUA CUG	Leu	Thr	Yeast mitochondria
AUU GUG UUG	lle Val Leu	Start (N-f Met)	Some prokaryotes ^a
UAA UAG	Stop	Glu	Some protozoans
UGA	Stop	Trp Selenocysteine	Mitochondria, mycoplasmas E. coli ^a

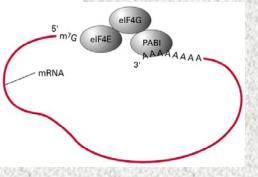

[&]quot;Depends on context of message, other factors

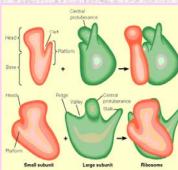





Posición de "balanceo"

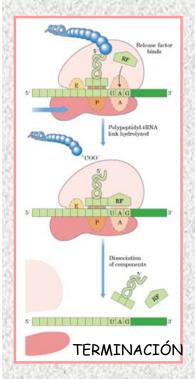

Aminoacil-tRNA sintetasa

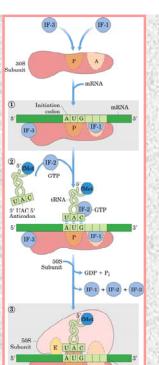



(b)

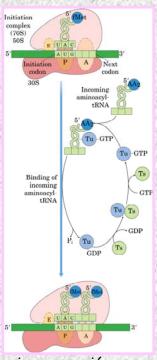
sitio P: unión del peptidil-tRNA sitio A: unión del aminoacil-tRNA sitio E: unión del tRNA descargado

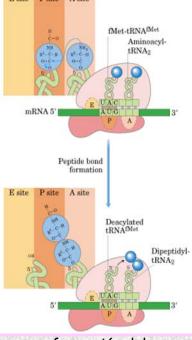
EUCARIONTES casquete 5'

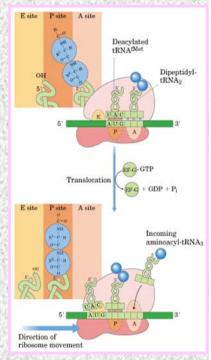



PROCARIONTES una secuencia específica

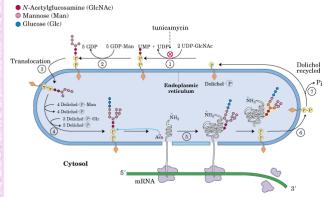
INICIACIÓN

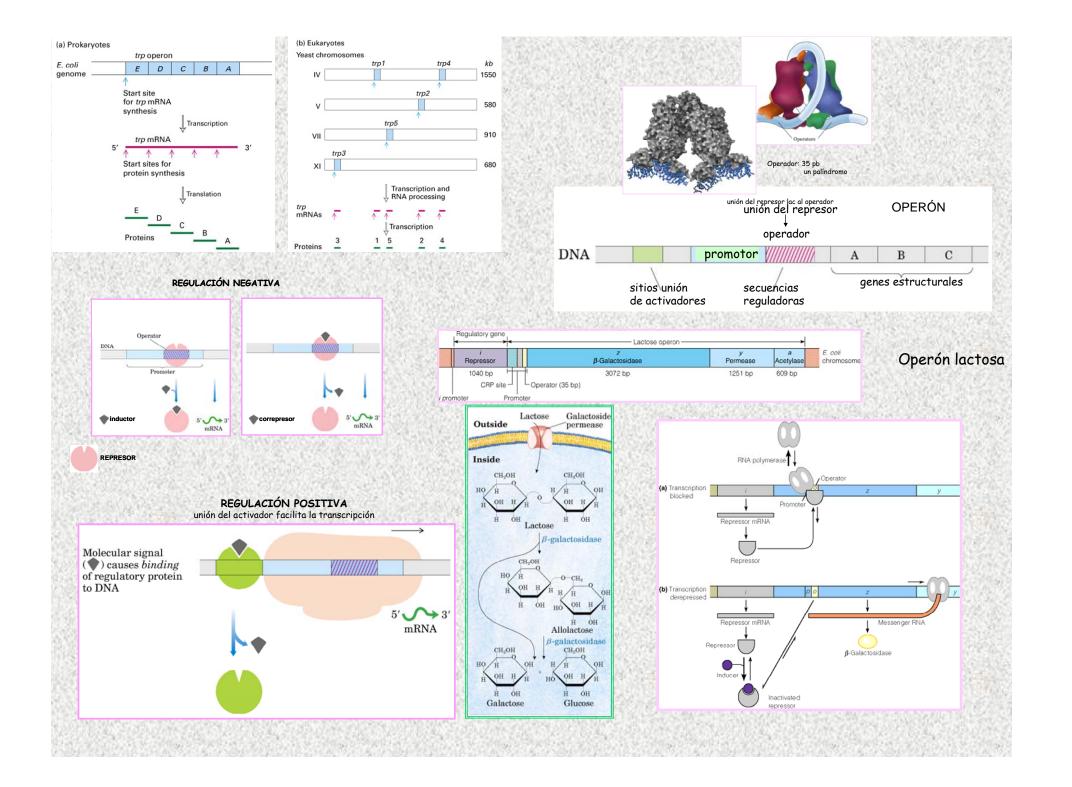

aminoacil-tRNA iniciador


PROCARIONTES: fMet-tRNA EUCARIONTES: Met-tRNA

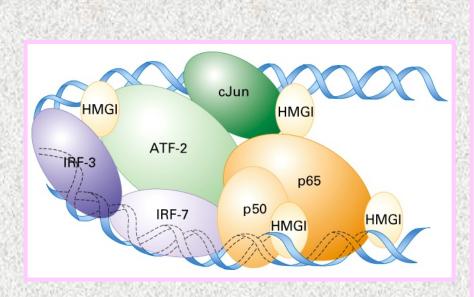


ELONGACIÓN

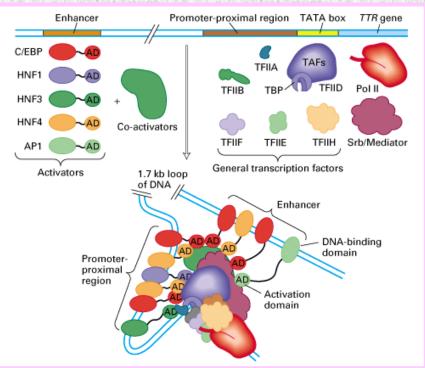

incorporación aminoacil-tRNA


formación del enlace peptídico

translocación


Modificaciones postraduccionales

Eliminación de Met terminales Bloqueo de aminoácido amino-terminal Formación de puentes disulfuro Glicosilación Pérdida del péptido señal



En eucariontes la situación es más compleja

Activación de la expresión del interferón β en secuencias amplificadoras y mediante factores de transcripción

Regulaciónde la transcripción del gen que codifica la transtirretina de hepatocitos

Varios activadores y represores que actúan de forma conjunta