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- Experimental knowledge on protein sequences and structures

- Combining experimental structure determination with prediction to cover the structural space

- Structure Visualization

- Structural alignments / Protein domains

- Characteristics of the space of structures. Relationship with that of sequences

- Protein homology

- Hierarchical classification of the protein universe

- Classification of protein structure prediction methods

- Prediction of 1D characteristics

- Secondary structure and solvent accessibility

- Transmembrane helices

- Unstructured regions

- Prediction of 3D structure

- Homology modeling

- Threading

- Combined and fragment-based approaches

- Model filtering

- Correlated mutations as distance constraints

- Assessment of prediction methods

- Bibliography



Obtaining protein sequences

• van Dijk, E.L., Auger, H., Jaszczyszyn, Y. and Thermes, C. (2014) Ten years of next-generation sequencing technology., Trends Genet, 30, 
418-426.
• Collins, F.S., Green, E.D., Guttmacher, A.E. & Guyer, M.S. (2003) A vision for the future of genomic research. Nature, 422, 835-847.
• Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. (2004). Science 304, 66-74.

It is “easy” to obtain protein sequences

August 2015: GenBank: 187 million seqs (DNA) from 500.000 
diff organisms -> 50 million seqs translated into proteins
(UniProt/TrEMBL)



Experimental determination of protein 3D structures

X-ray

NMR

Electron
microscopy

… and not so easy to obtain 3D structures.
Methods keep on improving, although NMR 
is declining and e- microscopy increasingly 
used for HR. 

August 2015: 100.000 protein structures 
experimentally solved (PDB)
=> 0.2% of known protein sequences
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Experimental knowledge on
protein sequences, functions and 3D structures

Consequently… The number of known 3D structures 
is orders of magnitude lower than the number of 
known sequences: “sequence/structure gap”

Sequence-structure
gap



Vitkup, D., Melamud, E., Moult, J. and Sander, C. (2001) Completeness in structural genomics. Nat Struct Biol, 8, 559-566.

Structural Genomics

Aim: massive (high-throughput) determination
of protein 3D structures

Structural genomics is not as “massive” as 
expected



Combining experimental structure determination
with prediction to cover the protein structural space



Combining experimental structure determination
with prediction to cover the protein structural space

Experimental methods do not aim to solve ALL protein structures but a representative set 
so that the rest can be modeled (predicted) based on them.



Structure Visualization

Main
display

Menu

Page items
connected with 
JMol applet

JMol (applet) /JSMol (javascript)

• Does not require installation (java applet (or JS) embedded in web pages) [Also 
available as standalone java program]
• Easy to customize and connect with page elements/controls
• Not many features: suitable for a quick view.

http://jmol.sourceforge.net/



Structure Visualization

PyMol

• Local installation.
• Many features
• Easily expandable with modules/scripts in python.

https://www.pymol.org/



Protein domains

Domains are the functional, structural and evolutionary units of proteins. They are quite 
independent in all these aspects. And as so they should be considered in protein studies 
(evolution, structure prediction, …)

Rabbit pyruvate kinase

(Wikipedia)



Multi-domain proteins

N C

Many of the discussed approaches for structure prediction split into 
domains implicitly. E.g. different fragments/templates for the 
different domains.

But… If 1) the domain composition of the target sequence is known 
(or suspected) or 2) models present problems apparently due to 
domains => Model individual domains separately.



Structural alignments

Based on structural/geometric criteria (not sequence matching)

Only way to align distant homologs (e.g. to locate equivalent (“conserved”/functional) 
residues, etc.) and structural analogs (same structure but no homology)

Also used for constructing protein classifications (detect similar folds), evaluate models, ….



Characteristics of the structural space
Relationship with the sequence space

Leonov, H., Mitchell, J.S. & Arkin, I.T. (2003) Monte 
Carlo estimation of the number of possible protein folds: 
effects of sampling bias and folds distributions. Proteins, 
51, 352-359.

Koonin, E.V., Wolf, Y.I. & Karev, G.P. (2002) The structure 
of the protein universe and genome evolution. Nature, 420, 
218-223.

There is a “small” number of different 
folds/topologies in nature and their sequence 
population is highly un-even



Characteristics of the structural space
Relationship with the sequence space

Orengo, C.A., Jones, D.T. & Thornton, J.M. (1994) Protein superfamilies and domain superfolds. Nature, 372, 631-634.

Highly populated folds
(superfolds)



Espacio de secuencias
Very different sequences can fold into the same 3D structure…. Either having the 
same (distant) evolutionary origin (“distant homologs”)….

Holmes, K., Sander, C., Valencia., A. (1992) A new ATP-binding fold in actin, hexokinase and Hsc70, Trends in Cell Biol., 3, 53-59.

Characteristics of the structural space
Relationship with the sequence space



Petsko, GA, Ringe, D (2007) Protein Structure and Function.New Science Press.

… Or without any traceable homology (common ancestry) => totally unrelated sequences
(convergent evolution to the same structure)

Characteristics of the structural space
Relationship with the sequence space



Sequence space

Characteristics of the structural space
Relationship with the sequence space

But the contrary is not true: highly similar sequence ALWAYS fold into the same 3D 
structure

So the relationship between the sequence and structural spaces is “convergent”

Sequence space



Homology

Pazos, F. and Sanchez-Pulido, L. (2014) Protein Superfamilies. In, eLS. John Wiley & Sons, Ltd, Chichester, DOI: 
10.1002/9780470015902.a9780470025587.

https://evolution.berkeley.edu/evolibrary/article/evo_09

Common ancestry
Reflected in sequence, structure and function similarity
=> These features can be (with caution) transferred between homologs

Analogy: Similarity due to convergent evolution from different origins

Exs. Wings, eyes, …
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Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J., Chothia, C. and Murzin, A.G. (2004) SCOP database in 2004: refinements integrate 
structure and sequence family data. Nucleic Acids Res., 32, D226-229.

http://scop.mrc-lmb.cam.ac.uk/scop/index.html

Hierarchical classification of the structural
(and sequence) space

SCOP

Class: Proteins with similar secondary structure content
Fold:  “ .. and with similar arrangement of sec. str. elements
Superfamily: “ … and with the same evolutionary origin (homologs)
Family: “ …. and with clear sequence similarity



Hierarchical classification of the structural
(and sequence) space

SCOP / CATH

Pearl F, Todd A, Sillitoe I et al. (2005) The CATH Domain Structure Database and related resources Gene3D and DHS provide 
comprehensive domain family information for genome analysis. Nucleic Acids Research 33: D247–D251. 
http://www.cathdb.info/

Pazos, F. and Sanchez-Pulido, L. (2014) Protein Superfamilies. In, eLS. John Wiley & Sons, Ltd, Chichester, DOI: 
10.1002/9780470015902.a9780470025587.

Class  > Architecture >  Topology    >   Homolog. superfam.



Protein Structure prediction
(Historical) classification of methods

Protein 
representation

1D                        2D                      3D                      4D

Use aa sequence
alone?

Ab Initio 

No Ab-Initio 

Secondary structure
prediction

Contact prediction

- Molecular dynamics
- Energy minimisation

- Homology modeling
- Threading

AAVLYFGREDHTLLVY

AAVLYFGREDHTLLVY

docking

docking
with 
restraints

secondary                          -------- tertiary                           quaternary
Protein structural 
“level”

Secondary structure
prediction



1D sequence characteristics: Characteristics that can be represented by a single value associated with each amino acid (B. 
Rost).

These values often take the form of status labels, such as secondary structure (H-> helix, E> sheet, T-> turn). They can also 
take continuous values (% accessible surface ...)

Some 1D features:

• secondary structure

• Solvent accessibility

• Post-translational modifications

• signal peptides

• Coiled-coils

• disordered regions

• etc.

Why to predict secondary structure and other 1D characteristics, instead of 3D directly?

It is not always possible to generate a 3D model (reliable).

Help predicting 3D folding (restricts possible folds/models)

Function Prediction: e.g. particular secondary structure motifs associated to certain functions, disordered regions involved in 
binding

The mapping of all the 1D predictions along a sequence gives much information about possible structural and functional 
domains, active sites, distinct areas ....

Protein structure prediction
1D characteristics



b-strand

a-helix

1D characteristics
Secondary structure



1 ASKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTT 
TTGGGGSSEEEEEEEEEEEETTEEEEEEEEEEEETTTTEEEEEEEETT 

51 GKLPVPWPTLVTTFSYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTIFF
SS SS GGGGHHHHSSS GGG B GGGGGG HHHHTTTT EEEEEEEEE

101 KDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNV
TTS EEEEEEEEEEETTEEEEEEEEEEE TTSTTTTT B S    EEE

151 YIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHY
EEEEEGGGTEEEEEEEEEEEETTS EEEEEEEEEEEESSSS      SEE

201 LSTQSALSKDPNEKRDHMVLLEFVTAAGIT HGMDELYK
EEEEEEEE TT  SSEEEEEEEEEEES           

Usually different “vocabularies” of secondary structure states used for…

Definition: T=hydrogen bond turn, H=helix, G=310 helix, I=phi helix, B=residue in isolated beta bridge, 
E=strand, and S=bend

Prediction: H/E/T (3 states only)

Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. 
Biopolymers, 22, 2577-2637.

1D characteristics
Secondary structure



● Chou and Fasman in 1974, proposed the
first of these methods. They used
statistics from the 15 structures solved by
X-ray crystallography at the time. These
probabilities were calculated separately
for each residue. Later this method
showed an accuracy of 57% (3-states) on
62 proteins.

● Garnier (1978). Similar but statistics
based on pairs of residues (accuracy: ~
60%)

Based on simple statistics: propensities of each aminoacid to form each type of
secondary structure.

Secondary structure prediction
First generation methods

Chou, P.Y. and Fasman, G.D. (1974) Prediction of protein conformation. Biochemistry, 13, 222-244/225.

Garnier, J., Osguthorpe, D.J. and Robson, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the 
secondary structure of globular proteins. J. Mol. Biol., 120, 97-120.

Name           P(a) P(b)   P(turn) f(i)    f(i+1)  f(i+2)  f(i+3)
Alanine        142 83       66      0.06    0.076   0.035   0.058
Arginine        98     93       95      0.070   0.106   0.099   0.085
Aspartic Acid  101     54      146      0.147   0.110   0.179   0.081
Asparagine      67     89      156      0.161   0.083   0.191   0.091
Cysteine        70    119      119      0.149   0.050   0.117   0.128
Glutamic Acid  151 037       74      0.056   0.060   0.077   0.064
Glutamine      111    110       98      0.074   0.098   0.037   0.098
Glycine         57     75      156 0.102   0.085   0.190   0.152
Histidine      100     87       95      0.140   0.047   0.093   0.054
Isoleucine     108    160 47      0.043   0.034   0.013   0.056
Leucine        121 130       59      0.061   0.025   0.036   0.070
Lysine         114     74      101      0.055   0.115   0.072   0.095
Methionine     145 105       60      0.068   0.082   0.014   0.055
Phenylalanine  113    138       60      0.059   0.041   0.065   0.065
Proline         57     55      152 0.102   0.301   0.034   0.068
Serine          77     75      143      0.120   0.139   0.125   0.106
Threonine       83    119       96      0.086   0.108   0.065   0.079
Tryptophan     108    137       96      0.077   0.013   0.064   0.167
Tyrosine        69    147 114      0.082   0.065   0.114   0.125
Valine         106    170 50      0.062   0.048   0.028   0.053

Glu, Met Ala y Leu : tend to form hélices.
Val, Ile y Tyr: tend to be in beta strands.
Gly, Pro, ...: turns.



• Input: longer windows of adjacent residues (=> context information). Coupled to more 
advanced machine learning and statistical methods: neural networks, graph theory, rule-
based systems, multivar statistics.

• ~ 70% accuracy (3 states).

• Limitations: 
– Lower accuracies for b strands.

– Tend to predict too short segments

• Due to…
– Still low number of structures for training (and biased, e.g. more a than b).

• Long-range effects (3D contacts) not taken into account (only local)

Garnier, J. and Robson, B. (1989) The GOR method for predicting secondary structure in proteins. In D., F.G. (ed.), Prediction of protein 
structure and the principles of protein conformation. Plenum Press, New York, pp. 417-465

Secondary structure prediction
Second generation methods



Initiated by Levin (~69%) and Rost y Sander around 1994 
(PHD 72%)

– Main innovation: include evolutionary information in the input: multiple 
sequence alignments and profiles.

– Solve the problem with the b strands by balancing the training set (richer in 
a) 

– The prediction of a 1st NN is fed to a second one to “soft” the predictions: 
e.g. avoid too short elements, etc.

– All this breaks the 70% accuracy barrier.

Levin JM, Pascarella S, Argos P, Garnier J. (1993). Quantification of secondary structure prediction improvement using multiple alignments.
Protein Eng. 6(8):849-54. 

Rost, B. and Sander, C. (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. 
Proc Natl Acad Sci U S A, 90, 7558-7562.

Rost, B., Sander, C. and Schneider, R. (1994) PHD - A mail server for protein secondary structure prediction. Comp. Applic. Biosci., 10, 53-60.

Secondary structure prediction
Third generation methods



Secondary structure prediction
Example: PHD

Rost, B. and Sander, C. (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. 

Proc Natl Acad Sci U S A, 90, 7558-7562.

Rost, B., Sander, C. and Schneider, R. (1994) PHD - A mail server for protein secondary structure prediction. Comp. Applic. Biosci., 10, 53-60.



• Same methods (NN) but fed with better alignments: e.g. including remote 
homologs detected by psi-blast (introduced by David Jones with PSIPRED 
(1999)), or  by HMMs (Kevin Karplus et al. in SAMT99sec (1999)).

• Consensus methods: run different predictors and combine the predictions. E.g 
Jpred2 (Cuff y Barton, 2000).

Secondary structure prediction
Current methods

Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol, 292, 195-202.

Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ. (1998).  JPred: a consensus secondary structure prediction server. Bioinformatics. 
14(10):892-3. 

Accuracies ~76-78%



Métodos de Primera generación: Chou & 
Fasman, Lim, GORI

Métodos de Segunda generación :
Schneider, ALB, GORIII

Métodos de Tercera generación: LPAG, 
COMBINE, S83, NSSP, PHD

Accuracy limit?

- Intrinsic limit due to the deffinition of 
secondary structure elements (DSSP vs. 
others)
- Local information limited

Secondary Structure Prediction

Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. 
Biopolymers, 22, 2577-2637.



Secondary structure prediction
Factors to take into account

1) Equilibrium accuracy/coverage
(through “reliability”)

2) Results vary depending on protein



Useful for: 

● Discriminating among alternative 
structural models

● Functional and interaction sites

● Design of mutants, labels for proteins, 
etc.

1D Methods
Solvent accessibility prediction



Programs for defining solvent 
accessibility (from a 3D 
structure) report for each 
residue the accessible surface, 
in Å2.

Most prediction methods 
reduce this to two a number 
of discrete states: E.g. 2: 
buried (accs. relative. <16%, 
abs <50 Å2) vs. exposed; or 
10: different levels of 
accessibility 

Ls

Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. 
Biopolymers, 22, 2577-2637.

Solvent accessibility



- Same history as for secondary structure: propensities -> windows -> neural 
networks -> alignments -> better alignments & consensus methods

- Indeed, the programs are the same as for secondary structure, with minimal 
adaptations of the neural net to represent the accessibility states. So are the datasets 
used for training/testing, etc.

Rost, B. and Sander, C. (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. 

Proc Natl Acad Sci U S A, 90, 7558-7562.

Rost, B., Sander, C. and Schneider, R. (1994) PHD - A mail server for protein secondary structure prediction. Comp. Applic. Biosci., 10, 53-60.

Solvent accessibility prediction



Solvent accessibility prediction

Same average accuracy
Same factors to take into account



1D Methods
Transmembrane segments

- Difficult to crystallize: 
very low number of known 
structures



Same methods as for sec. str. and solvent 
accessibility. 

Much higher accuracies due to the 
peculiarities of these elements:

● Fixed length (20-30 res.)
● Rich in hydrophobic residues
● Loops connecting helices in the 
cytoplasm use to have positive 
charge.

1D Methods
Transmembrane helices



1D Methods
Transmembrane helices



1D Methods
Unstructured regions

•Tompa, P. (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett, 579, 3346-3354.
•Vucetic, S., Brown, C. J., Dunker, A. K. & Obradovic, Z. Flavors of protein disorder. Proteins 52, 573-84. (2003).
•Pazos, F., Pietrosemoli, N., García-Martín, J.A. and Solano, R. (2013) Protein intrinsic disorder in plants, Front Plant Sci, 4, 363.

A.k.a. disordered regions, intrinsically 
unstructured regions (IUR), …

Proteins totally or partially unstructure in their 
native (functional) state.

Importance increasingly being recognized. 
Involved in central processes. ~70% human 
proteins predicted to have 1 or more IUR of 
>=30 res). 



Frequently Involved in protein-protein interactions
In some cases they get structured upon binding

Unstructured regions



Compositionally biased regions. SEG

Specific for disorder.

● DISOPRED
● IUPRED
● ANCHOR (for disorder involved in binding)
● …

• Wootton, J.C. and Federhen, S. (1996) Analysis of compositionally biased regions in sequence databases. Meth in Enzym, 266, 554-571
• Ward, J. J., McGuffin, L. J., Bryson K., Buxton, B. F. & Jones, D. T. (2004). The DISOPRED server for the prediction of protein disorder.
Bioinformatics, 20:2138-2139.
• Dosztanyi, Z., Csizmok, V., Tompa, P. and Simon, I. (2005) IUPred: web server for the prediction of intrinsically unstructured regions of 
proteins based on estimated energy content, Bioinformatics, 21, 3433-3434.
• Dosztanyi, Z., Meszaros, B. and Simon, I. (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins, 
Bioinformatics, 25, 2745-2746.

Prediction of unstructured regions

Why to predict them?
•Remove for crystallizing
•Might cause problems in sequence 
searches 
•Map regions involved in transient 
interactions



ExPASy Proteomics tools http://www.expasy.ch/tools/

COIL – Coiled-coil regions.
PSORT - prediction of signal proteins and localisation sites 
SignalP - prediction of signal peptides

ChloroP - prediction of chloroplast peptides
NetOGlyc - prediction of O-glycosilation sites in mammalian proteins
Big-PI - prediction of glycosil -phosphatidyl inositol modification sites
DGPI - prediction of anchor and breakage sites for GPI

NetPhos - prediction of phosphorylation sites (Ser, Thr, Tyr) in 
eukaryotes
NetPicoRNA - prediction of cleavage sites for proteases in the 
picornavirus
NMT - prediction of N-miristoilation of N-terminals
Sulfinator - predicts sulphattation sites in tyrosines

1D Predictions
Other…

[abcdefg]n

Lupas, A., Dyke, M.v. and Stock, J. (1991) Predicting coiled coils from protein sequences. Science, 252, 1162-1164.



Protein Structure Prediction
3D Methods

- Ab initio

- Homology modelling/Comparative modelling.

- Fold recognition/
Remote homology modelling/threading



http://folding.stanford.edu/

3D Methods
Pure Ab Initio

Based on physico-chemical principles only (atom interaction energies, …)

Amino-acid sequence as only input (Anfinsen).

Interesting since they provide knowledge on the folding mechanism.

Purely ab-initio no usable for 3D prediction in general because:
• Empirical or semi-empirical interaction potentials with small inaccuracies that 
accumulate for large proteins and or long similations
• Require a lot of CPU power.

=> Practical utility for peptides or very short proteins



Structure space

Sequence space

Homology modelling

threading

3D Methods
Homology modelling vs. Threading



Homology modeling

Chothia, C. & Lesk, A.M. (1986) The relation between the divergence of sequence and structure in proteins. EMBO J., 5, 823-826.

Sander, C. & Schneider, R. (1993) The HSSP data base of protein structure-sequence alignments. Nucleic Acids Res., 21, 3105-3109.

Based on the observation that similar sequences fold into the same (overall) structure

For a medium-length protein, a fair threshold 
for HM is around 25% seqid.

HM

threading

Similar structures
Different structures



Locate template 

Generate alignment between sequences of target and template

For backbone atoms take the coordinates of the corresponding template 
atoms

For conserved residues between target and template take the atom 
coordinates for the side chains also.

Side chains of other aa.

- Use rotamer libraries

-Take coordinates of as many as possible equivalent atoms 
(Cb -> Cg, ->…)

Model loops (insertion/deletions)

Optimize final structure (MD, ...)

Evaluate model

Homology modeling – General strategy



Homology Modelling 
target-template alignment

?target

template

model

Homology
modelling

Alignment: crucial step.

The %ID target-template is the most 
important a-priori indicator of the 
expected quality of your model

Look for solved structures with sequences 

similar to our target (e.g. BLAST against PDB)



SWISS-MODEL - www.expasy.ch/swissmod/SWISS-MODEL.html
An automated comparative modelling server (ExPASy, CH)

CPHmodels - www.cbs.dtu.dk/services/CPHmodels/
Server using homology modelling (BioCentrum, Denmark)

SDSC1 - cl.sdsc.edu/hm.html
Protein structure homology modeling server (San Diego, USA)

3D-JIGSAW - www.bmm.icnet.uk/servers/3djigsaw/
Automated system for 3D models for proteins (Cancer Research UK)

http://www.expasy.ch/swissmod/SM_3DCrunch.html
http://pipe.rockefeller.edu/modbase

Homology Modelling 
Public servers and model repositories

There are public web servers 
for modeling by homology a 
given sequence, as well as 
repositories of pre-generated 
models



Espacio de
estructuras

Espacio de
secuencias

Diseño por homología

threading

3D Methods 
Homology modeling vs. Threading

20% id

HM

threading

Similar 
structures

Different 
structures



Threading. General Strategy

Target 
sequence

Put (thread) the target sequence in the structures contained in a 
fold library (possible templates) and evaluate in which one it “fits 
best”, scoring these target-template matches by….

Look for folds “compatible” 
with the target sequence 
(even if sequence identity is 
very low)



Threading
Template search/scoring

- Amino-acids in similar environments as they are in known structures (pair potentials)

- Solvatation potentials.

- Matching of secondary structures (predicted – real (template)) and accessibilities

- Remote homolog detection. Using profiles, HMMs (HHPRED)

Söding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951-960. 

Structure space

Sequence space
Homology modl.

Fold recognition

Remote homology
modl.

superfamily
superfamily

familyfamily



Threading
Template search/scoring

Pazos, F. and Sanchez-Pulido, L. (2014) Protein Superfamilies. In, eLS. John Wiley & Sons, Ltd, Chichester, DOI: 
10.1002/9780470015902.a9780470025587.

1c7vA-1c3zA
12%

1c7vA-1k9uA
31% ID

1c7vA-1topA
40% ID



For a given residue pair, 
count instances at different 
separations

Energy of interaction = 
-KT ln (frequency of interactions) 
Boltzmann principle

d

d

Jones, D., Taylor, W. and Thornton, J. (1992) A new approach to protein fold recognition. Nature, 358, 86-89.

Sippl, M.J. (1995) Knowledge-based potentials for proteins. Curr Opin Struct Biol, 5, 229-235.

A
V

Threading
Example – pair potentials



Template-based modelling
Range of applicability and expected model quality

threading
Remote homology modelling

modelado por homología

% id seq.
con alguna 
estructura

0 30 100

calidad modelos
Fold ok nivel

atómico

7050

- cadenas laterales
- loops

- diferencia en loops
y gaps

- movimientos de
dominios

- cambios en el backbone

RMSD ~1.0A
RMSD ~3.5A

Detalles atomicos mal

HM

threading

Similar 
structures
Different 
structures



Protein Structure prediction
Current (CASP) classification of methods

TBM
(whole-template based modelling)

FM
(free modelling)

Newer methods are hybrid approaches, taking concepts and methods from all these 

CASP classification. For targets more than for methods

Vs.
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I-sites

Ab-initio

simulación MonteCarlo

3D Methods
Fragment-based

mini-threading + Ab-initio
Rosetta

Simons, K.T., Kooperberg, C., Huang, E. & Baker, D. (1997) Assembly of protein tertiary structures from fragments with similar local 
sequences using simulated annealing and bayesian scoring functions. J Mol Biol, 268, 209-225.

http://robetta.bakerlab.org/

Mini-threading of small fragments of the target 
sequence (~10aa). Generation of the final model 
by exploring combinations of these small fragment 
models.



3D Methods - Fragment-based - Meta-method + Ab-initio
I-TASSER

J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 
12: 7-8

http://zhanglab.ccmb.med.umich.edu/I-TASSER/

FFAS-3D, HHsearch, 
MUSTER, 
pGenTHREADER, PPAS, 
PRC, PROSPECT2, SP3, and 
SPARKS-X 

Combination of threading fragments of (overlapping) segments of the target sequence of 
different lengths. Clustering of models to look for overrepresented folds. Filtering by 
different constraints and optimization (energy minimization) of the final model(s).



3D Methods
Additional model filtering

Proteins biannual issues on CASP (Critical assessment of protein structure prediction methods)

Juan, D., Pazos, F. and Valencia, A. Emerging methods in protein co-evolution. Nat Rev Genet 2013;14(4):249-261.

Many approaches produce more than one alternative model. Filter then using any 
available information you might have on your particular protein.

E.g. 
• Distance constraints (experimental or predicted): NMR data, crosslinking, 

residue co-evolution (incorporated in some methods), …
• Functional information: function of the proposed fold, position of functional 

residues in the model, …



Göbel, U., Sander, C., Schneider, R. and Valencia, A. (1994) Correlated mutations and residue contacts in proteins, Proteins, 18, 309-317.

Olmea, O. and Valencia, A. (1997) Improving contact predictions by the combination of correlated mutations and other sources of sequence 
information., Fold Des, 2, S25-S32.

Florencio Pazos, Manuela Helmer Citterich, Gabriele Ausiello and Alfonso Valencia (1997). Correlated Mutations Contain Information About 
Protein-Protein Interaction. Journal of Molecular Biology. 271(4):511-523.

Until now… very 
low reliability. 
Useful (selecting 
among models or 
docking poses…) 
but not enough to 
predict 3D 
structure.

Co-evolving positions as distance constraints



Morcos, F. et al. (2011). Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl 
Acad. Sci. USA 108, E1293–E1301. 

Jones, D. T., Buchan, D. W. A., Cozzetto, D. & Pontil, M. (2012). PSICOV: precise structural contact prediction using sparse inverse 
covariance estimation on large multiple sequence alignments. Bioinformatics 28, 184–190.

Hopf et al. (2012). Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing. Cell. 149(7):1607–1621

Correlated mutations - “New wave” methods

Evocouplings (C. Sander), DCA (M. 
Weigt), PSICOV (D. Jones)

- Methodologies able to disentangle 
indirect correlations

- Many more SEQUENCES

Accuracy of predicted contacts increased 
orders of magnitude!

“protein folding problem solved’, 
according with authors. A llimited number 
of reliable correlated pairs used as 
constraints for MD.
Models <= 2A RMSD



Johannes Söding (2017). Big-data approaches to protein structure prediction. 
Science. 355(6322):248-249.

Problem: They need MANY 
homologous sequences. In 
the order of thousands. 
Available only for a limited 
number of protein families

Possible solutions:
- Metagenomic sequences
- “A la carte” re-sequencing

Correlated mutations - “New wave” methods



Assessment of prediction methods
CASP (bianual 94-)

Databases
Algorithm

Computer evaluation
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http://predictioncenter.org/

Proteins biannual issues on CASP/CAFASP

Also section for fully automatic servers
(CAFASP / ROLL)
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