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Structural Bioinformatics

- Experimental knowledge on protein sequences and structures
- Combining experimental structure determination with prediction to cover the structural space
- Structure Visualization
- Structural alignments / Protein domains
- Characteristics of the space of structures. Relationship with that of sequences
- Protein homology
- Hierarchical classification of the protein universe
- Classification of protein structure prediction methods
- Prediction of 1D characteristics
- Secondary structure and solvent accessibility
- Transmembrane helices
- Unstructured regions
- Prediction of 3D structure
- Homology modeling
- Threading
- Combined and fragment-based approaches
- Model filtering
- Correlated mutations as distance constraints
- Assessment of prediction methods

- Bibliography

http://csbg.cnb.csic.es/Courses/UMA_BIF 2018/



Obtaining protein sequences

Cumulative sequenced genomes
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August 2015: GenBank: 187 million seqs (DNA) from 500.000
B — S~ s diff organisms -> 50 million segs translated into proteins
S’ i (UniProt/TrEMBL)

LG

It is “easy” to obtain protein sequences

« van Dijk, E.L., Auger, H., Jaszczyszyn, Y. and Thermes, C. (2014) Ten years of next-generation sequencing technology., Trends Genet, 30,
418-426.

* Collins, E.S., Green, E.D., Guttmacher, A.E. & Guyer, M.S. (2003) A vision for the future of genomic research. Nature, 422, 835-847.
* Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. (2004). Science 304, 66-74.



Mumber of Mew Structures Per Year

Experimental determination of protein 3D structures
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August 2015: 100.000 protein structures microscopy

experimentally solved (PDB)
=> 0.2% of known protein sequences

... and not so easy to obtain 3D structures.
Methods keep on improving, although NMR
is declining and e- microscopy increasingly
used for HR.




Experimental knowledge on
protein sequences, functions and 3D structures
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Consequently... The number of known 3D structures
is orders of magnitude lower than the number of
known sequences: “sequence/structure gap”




Structural Genomics

Aim: massive (high-throughput) determination
of protein 3D structures
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Structural genomics is not as “massive” as
expected
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Vitkup, D., Melamud, E., Moult, J. and Sander, C. (2001) Completeness in structural genomics. Nat Struct Biol, 8, 559-566.



Combining experimental structure determination
with prediction to cover the protein structural space




Combining experimental structure determination
with prediction to cover the protein structural space

Experimental methods do not aim to solve rotein structures but a representative set
so that the rest can be modeled (predicted) based on them.



Structure Visualization
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JMol (applet) /[UJSMol (javascript)
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JMol applet
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display

Menu

» Does not require installation (java applet (or JS) embedded in web pages) [Also

available as standalone java program]
» Easy to customize and connect with page elements/controls
* Not many features: suitable for a quick view.

http://jmol.sourceforge.net/



Structure Visualization
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Representations
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* Local installation.
» Many features
» Easily expandable with modules/scripts in python.

https://www.pymol.org/



Protein domains

Yeast Topoisomerase || EEHEHEE
E. colf gyrase B ===t
E. coli gyrase A

Human succinyl CoA-transferase
E. coli acetate Co-A fransforase o o — ]
E. coll acetate Co-A transferase

B. subtilis DNA pol 1l o === 1
E. coll DNA pol Il e X
E. coli DMA pol lll & =

Yeast histidine bicsynthesis HIS2 —E—-
E. coli histiding biosynthesis HIS2 SRR
E. colf histidine biosynthesls HIS10 o ——————=nm ]

Human &1-pyrroline-5-carboxylate synthetase —:ﬂ-m

E. coli y-glutamyl phosphate reductase
E. coli glutamate-5-kinase

Rabbit pyruvate kinase
(Wikipedia)

Domains are the functional, structural and evolutionary units of proteins. They are quite
independent in all these aspects. And as so they should be considered in protein studies
(evolution, structure prediction, ...)



Multi-domain proteins

Many of the discussed approaches for structure prediction split into
domains implicitly. E.g. different fragments/templates for the
different domains.

But... If 1) the domain composition of the target sequence is known
(or suspected) or 2) models present problems apparently due to
domains => Model individual domains separately.



Structural alignments
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Based on structural/geometric criteria (not sequence matching)

Only way to align distant homologs (e.g. to locate equivalent (“‘conserved’/functional)
residues, etc.) and structural analogs (same structure but no homology)

Also used for constructing protein classifications (detect similar folds), evaluate models, ....



Characteristics of the structural space
Relationship with the sequence space
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Leonov, H., Mitchell, J.S. & Arkin, I.T. (2003) Monte
Carlo estimation of the number of possible protein folds:
effects of sampling bias and folds distributions. Proteins,
51, 352-359.
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Characteristics of the structural space
Relationship with the sequence space

Highly populated folds

(superfolds)
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Orengo, C.A., Jones, D.T. & Thornton, J.M. (1994) Protein superfamilies and domain superfolds. Nature, 372, 631-634.



Characteristics of the structural space
Relationship with the sequence space

DnaK

Hexokinase

Espacio de secuencias

Very different sequences can fold into the same 3D structure.... Either having the
same (distant) evolutionary origin (“distant homologs”)....

Holmes, K., Sander, C., Valencia., A. (1992) A new ATP-binding fold in actin, hexokinase and Hsc70, Trends in Cell Biol., 3, 53-59.



Characteristics of the structural space
Relationship with the sequence space

... Or without any traceable homology (common ancestry) => totally unrelated sequences
(convergent evolution to the same structure)

Petsko, GA, Ringe, D (2007) Protein Structure and Function.New Science Press.



Characteristics of the structural space
Relationship with the sequence space

But the contrary is not true: highly similar sequence ALWAYS fold into the same 3D
structure

“
.
Ps

S
Sequence space

So the relationship between the sequence and structural spaces is “convergent”

Sequence space



Homology

Common ancestry
Reflected in sequence, structure and function similarity
=> These features can be (with caution) transferred between homologs

Sovr gev . @St notre poignet.
Qe A ast notre cheville.
Qas sad. s SOt nos ongles.

Les chevaux ont, comme
nous, des avant-bras,
des bras et des épaules.

Analogy: Similarity due to convergent evolution fr

Exs. Wings, eyes, ...

Pazos, F. and Sanchez-Pulido, L. (2014) Protein Superfamilies. In, eLS. John Wiley & Sons, Ltd, Chichester, DOI:
10.1002/9780470015902.2a9780470025587.

https://evolution.berkeley.edu/evolibrary/article/evo 09



Hierarchical classification of the structural
(and sequence) space
SCOP
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Mainly parallel beta sheets (beta-alpha-beta units)
4. Alpha and beta proteins (at+b) [53931] (279) BNl
Mainly antiparallel beta sheets (segregated alpha and beta regions)
5. Multi-domain proteins (alpha and beta) [56572] (46)
Folds consisting of two or more domains belonging 1o different classes
6. Membrane and cell surface proteins and peptides [56835] (47) EEd
Does not include proteins in the immune system
7. Small proteins [56992] (75)
Usually dominated by metal ligand, heme, and/or disulfide bridges
8. Coiled coil proteins [57942] (6)
Not a true class
9. Low resolution protein structures [58117] (24 B3
Not a true class
10. Peptides [58231] (116) EXd
Peptides and fragments. Not a true class
11. Designed proteins [5S8788] (42)
Experimental structures of proteins with essentially non-natural sequences. Not a true class
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protein
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Class: Proteins with similar secondary structure content

Fold: “ .. and with similar arrangement of sec. str. elements
Superfamily: “ ... and with the same evolutionary origin (homologs)
Family: “ .... and with clear sequence similarity

Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J., Chothia, C. and Murzin, A.G. (2004) SCOP database in 2004: refinements integrate
structure and sequence family data. Nucleic Acids Res., 32, D226-229.

http://scop.mrc-Imb.cam.ac.uk/scop/index.html



Hierarchical classification of the structural
(and sequence) space

SCOP/ CATH
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Pearl F, Todd A, Sillitoe I et al. (2005) The CATH Domain Structure Database and related resources Gene3D and DHS provide

comprehensive domain family information for genome analysis. Nucleic Acids Research 33: D247-D251.
http://www.cathdb.info/

polcalcin

Pazos, F. and Sanchez-Pulido, L. (2014) Protein Superfamilies. In, eLS. John Wiley & Sons, Ltd, Chichester, DOI:
10.1002/9780470015902.a9780470025587.



Protein structural

Protein Structure prediction
(Historical) classification of methods
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Protein structure prediction
1D characteristics

1D sequence characteristics: Characteristics that can be represented by a single value associated with each amino acid (B.
Rost).

These values often take the form of status labels, such as secondary structure (H-> helix, E> sheet, T-> turn). They can also
take continuous values (% accessible surface ...)

Some 1D features:

. secondary structure

»  Solvent accessibility

. Post-translational modifications
. signal peptides

+  Coiled-coils

. disordered regions

. etc.

Why to predict secondary structure and other 1D characteristics, instead of 3D directly?

It is not always possible to generate a 3D model (reliable).

Help predicting 3D folding (restricts possible folds/models)

Function Prediction: e.g. particular secondary structure motifs associated to certain functions, disordered regions involved in
binding

The mapping of all the 1D predictions along a sequence gives much information about possible structural and functional
domains, active sites, distinct areas ....



1D characteristics
Secondary structure
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1D characteristics
Secondary structure

1 ASKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTT

51 GKLPVPWPTLVTTFSYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTIFF
GGGGHHHH GGG GGGGGG HHHH

101 KDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNV

151 YIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQONTPIGDGPVLLPDNHY
GGG

201 LSTQSALSKDPNEKRDHMVLLEFVTAAGIT HGMDELYK

Usually different “vocabularies” of secondary structure states used for...

Definition: T=hydrogen bond turn, H=helix, G=310 helix, I=phi helix, B=residue in isolated beta bridge,
E=strand, and S=bend

Prediction: H/E/T (3 states only)

Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers, 22, 2577-2637.



Secondary structure prediction
First generation methods

Based on simple statistics: propensities of each aminoacid to form each type of
secondary structure.

Name P(a) P (b) P (turn) £(i) £(i+l) £(i+2) £(i+3)

Alanine 142 83 66 0.06 0.076 0.035 0.058

. Arginin 98 93 95 0.070 0.106 0.099 0.085

. Chou and Fasman in 1974, proposed the Aspartic Acid 101 54 146 0.147 0,110 0.179 0.081

first of these methods. They used Cyeeeine 70 115 11s o145 000 0117 0128

statistics from the 15 structures solved by Clatamine 111 110 98 0.074 0.058 0.037 0.098

_ 1 Glycin 57 75 156 0.102 0.085 0.190 0.152

X ray CrySta”Ography at the tlme' These Hiis,iid‘iane 100 87 95 0.140 0.047 0.093 0.054

probabllltles were calculated separately Isoleucine 108 160 47 0.043 0.034 0.013 0.056

. . Leucine 121 130 59 0.061 0.025 0.036 0.070

for each residue. Later this method Lysine e 7 101 0.055 0115 0.072  0.095
e ionine . . . .

showed an accuracy of 57% (3-states) on Phenylalanine 113 138 60 0.059 0.041 0.065 0.065

. Proline 57 55 152 0.102 0.301 0.034 0.068

62 proteins. Serine 77 75 143 0.120 0.139 0.125 0.106

Threonine 83 119 96 0.086 0.108 0.065 0.079

Tryptophan 108 137 96 0.077 0.013 0.064 0.167

H imi ki Tyrosin 69 147 114 0.082 0.065 0.114 0.125

* Garnler (1978)' Slmllar bUt StatIStlcs Vlersle © 106 170 50 0.062 0.048 0.028 0.053

based on pairs of residues (accuracy: ~
600/0) Glu, Met Ala y Leu : tend to form hélices.

Val, Ile y Tyr: tend to be in beta strands.
Gly, Pro, ...: turns.

Chou, P.Y. and Fasman, G.D. (1974) Prediction of protein conformation. Biochemistry, 13, 222-244/225.

Garnier, J., Osguthorpe, D.J. and Robson, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the
secondary structure of globular proteins. J. Mol. Biol., 120, 97-120.



Secondary structure prediction
Second generation methods

* Input: longer windows of adjacent residues (=> context information). Coupled to more
advanced machine learning and statistical methods: neural networks, graph theory, rule-
based systems, multivar statistics.

 ~70% accuracy (3 states).

« Limitations:

— Lower accuracies for 3 strands.
— Tend to predict too short segments

* Dueto...

— Still low number of structures for training (and biased, e.g. more o than f3).

» Long-range effects (3D contacts) not taken into account (only local)

Garnier, J. and Robson, B. (1989) The GOR method for predicting secondary structure in proteins. In D., F.G. (ed.), Prediction of protein
structure and the principles of protein conformation. Plenum Press, New York, pp. 417-465



Secondary structure prediction
Third generation methods

Initiated by Levin (~69%) and Rost y Sander around 1994
(PHD 72%)

— Main innovation: include evolutionary information in the input: multiple
sequence alignments and profiles.

— Solve the problem with the 3 strands by balancing the training set (richer in
)

— The prediction of a 1st NN is fed to a second one to “soft” the predictions:
e.g. avoid too short elements, etc.

— All this breaks the 70% accuracy barrier.

Levin JM, Pascarella S, Argos P, Garnier J. (1993). Quantification of secondary structure prediction improvement using multiple alignments.
Protein Eng. 6(8):849-54.

Rost, B. and Sander, C. (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks.
Proc Natl Acad Sci U S A, 90, 7558-7562.

Rost, B., Sander, C. and Schneider, R. (1994) PHD - A mail server for protein secondary structure prediction. Comp. Applic. Biosci., 10, 53-60.



Secondary structure prediction
Example: PHD

sequence infor- profile derived from multiple alignment w0 levels of nenral network
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Rost, B. and Sander, C. (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks.
Proc Natl Acad Sci U S A, 90, 7558-7562.
Rost, B., Sander, C. and Schneider, R. (1994) PHD - A mail server for protein secondary structure prediction. Comp. Applic. Biosci., 10, 53-60.



Secondary structure prediction
Current methods

« Same methods (NN) but fed with better alignments: e.g. including remote
homologs detected by psi-blast (introduced by David Jones with PSIPRED
(1999)), or by HMMs (Kevin Karplus ef al. in SAMT99sec (1999)).

» Consensus methods: run different predictors and combine the predictions. E.g
Jpred2 (Cuff'y Barton, 2000).

Accuracies ~76-78%

Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol, 292, 195-202.

Cuft JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ. (1998). JPred: a consensus secondary structure prediction server. Bioinformatics.
14(10):892-3.



Secondary Structure Prediction
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Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers, 22, 2577-2637.



Secondary structure prediction
Factors to take into account

1) Equilibrium accuracy/coverage
(through “reliability™)

2) Results vary depending on protein
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1D Methods
Solvent accessibility prediction

Useful for:

. Discriminating among alternative
structural models

. Functional and interaction sites

. Design of mutants, labels for proteins,
etc.




Solvent accessibility

Outside

Programs for defining solvent
accessibility (from a 3D
structure) report for each
residue the accessible surface,

in A2,

Most prediction methods
reduce this to two a number
of discrete states: E.g. 2:
buried (accs. relative. <16%,
abs <50 A2) vs. exposed:; or
10: different levels of
accessibility

Inside

Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers, 22, 2577-2637.



Solvent accessibility prediction

- Same history as for secondary structure: propensities -> windows -> neural
networks -> alignments -> better alignments & consensus methods

- Indeed, the programs are the same as for secondary structure, with minimal
adaptations of the neural net to represent the accessibility states. So are the datasets
used for training/testing, etc.

sequence infor- profile derived from multiple alignment two levels of nenral network onedevel networ
matipnffml_n for 1+ windo¥ of adjacent resines sysems: PHDzec and PHDhtm
protein family
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Rost, B. and Sander, C. (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks.
Proc Natl Acad Sci U S A, 90, 7558-7562.
Rost, B., Sander, C. and Schneider, R. (1994) PHD - A mail server for protein secondary structure prediction. Comp. Applic. Biosci., 10, 53-60.



Solvent accessibility prediction

Same average accuracy

Same factors to take into account
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1D Methods
Transmembrane segments

Known Structures of Transmembrane Protein Domains
fall into Two Categories

- Difficult to crystallize:
very low number of known
structures

a-Helical Bundle [;-Barrel
(Bacteriorhodopsin, PDB 1AP3) (Matrix Porin, PDB 10PF)




1D Methods
Transmembrane helices

Same methods as for sec. str. and solvent
accessibility.

Much higher accuracies due to the .m%:
peculiarities of these elements: i
. Fixed length (20-30 res.)
. Rich in hydrophobic residues
. Loops connecting helices in the
cytoplasm use to have positive
charge. Amino acid number

100 RI=9
n-whmh rotein B
RI=4 o h ““ p
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]

Hydropathy
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1D Methods
Transmembrane helices
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1D Methods
Unstructured regions

A.Kk.a. disordered regions, intrinsically
unstructured regions (IUR), ...

Proteins totally or partially unstructure in their
native (functional) state.

Importance increasingly being recognized.
Involved in central processes. ~70% human
proteins predicted to have 1 or more IUR of

>=30 res). P
Ps

o

entropic chains recognition
directly function
due bo disorider as ,/
spring, bristbe, linker //"
\

.-l"'".

transient binding permanent binding (Y] . { ) s
':‘-h"""""-?" \ e -~ f -\ P >3 3
. - - W . o - 5 i . ] ¥ 1 ‘ " f_-.-. . .‘ () -7 e “‘U' \{
display sites chaperones effectors  assemblers  scavengers Y -AY. ' N\
sites of post- st the foldi modulate the assemibtle stare andior 6 = > ‘ 7 ¥
tramslathonal “;‘_“EN AH' e activity af a complexes or nentralize o VN Uversky, CJ Oldfield and AK Dunker
musdification LI AT, prTEi partner molecule  inrget sctivity small ligands Showing your ID: intrinsic disorder as an 1D

for recognition, regulation and cell signaling
J. Mol. Recognit (2005) 18: 343-384
*Tompa, P. (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett, 579, 3346-3354.
*Vucetic, S., Brown, C. J., Dunker, A. K. & Obradovic, Z. Flavors of protein disorder. Proteins 52, 573-84. (2003).
*Pazos, F., Pietrosemoli, N., Garcia-Martin, J.A. and Solano, R. (2013) Protein intrinsic disorder in plants, Front Plant Sci, 4, 363.



Unstructured regions

Frequently Involved in protein-protein interactions
In some cases they get structured upon binding

% Sirtuin - p53

S100pp - p53
Complex | — Complex
——ARAAAAA—
365 HSSHLKSKKGQSTSRHKKLMFKTEGPDSD-C00™
—_—
CREB BP - p53 o —
Complex Cyclin A2 - p53
Complex

Honnappa S et al. J. Biol. Chem. 2006;281:16078-16083

CJ Oldfield et al. BMC Genomics 2008 9(Suppl 1):S1



Prediction of unstructured regions

Why to predict them?
*Remove for crystallizing
*Might cause problems in sequence

searches
*Map regions involved in transient
interactions

. “spmunn?
.....IIIIIIIIIII-

4%mpyg
4 "t"rasnmnnnmannnns’

Compositionally biased regions. SEG

Specific for disorder.

« DISOPRED
- IUPRED
« ANCHOR (for disorder involved in binding)

» Wootton, J.C. and Federhen, S. (1996) Analysis of compositionally biased regions in sequence databases. Meth in Enzym, 266, 554-571

» Ward, J. J., McGulffin, L. J., Bryson K., Buxton, B. F. & Jones, D. T. (2004). The DISOPRED server for the prediction of protein disorder.
Bioinformatics, 20:2138-2139.

* Dosztanyi, Z., Csizmok, V., Tompa, P. and Simon, 1. (2005) IUPred: web server for the prediction of intrinsically unstructured regions of
proteins based on estimated energy content, Bioinformatics, 21, 3433-3434.

* Dosztanyi, Z., Meszaros, B. and Simon, 1. (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins,
Bioinformatics, 25, 2745-2746.



1D Predictions
Other...

ExPASy Proteomics tools

COIL - Coiled-coil regions.
PSORT - prediction of signal proteins and localisation sites
SignalP - prediction of signal peptides

ChloroP - prediction of chloroplast peptides

NetOGlyc - prediction of O-glycosilation sites in mammalian proteins
Big-PI - prediction of glycosil -phosphatidyl inositol modification sites
DGPI - prediction of anchor and breakage sites for GPI

NetPhos - prediction of phosphorylation sites (Ser, Thr, Tyr) in
eukaryotes

NetPicoRNA - prediction of cleavage sites for proteases in the
picornavirus

NMT - prediction of N-miristoilation of N-terminals

Sulfinator - predicts sulphattation sites in tyrosines

[abcdefqg]

Lupas, A., Dyke, M.v. and Stock, J. (1991) Predicting coiled coils from protein sequences. Science, 252, 1162-1164.



Protein Structure Prediction
3D Methods

- Homology modelling/Comparative modelling.

- Fold recognition/
Remote homology modelling/threading



3D Methods
Pure Ab Initio

Based on physico-chemical principles only (atom interaction energies, ...)
Amino-acid sequence as only input (Anfinsen).

Interesting since they provide knowledge on the folding mechanism.

Purely ab-initio no usable for 3D prediction in general because:

* Empirical or semi-empirical interaction potentials with small inaccuracies that
accumulate for large proteins and or long similations

* Require a lot of CPU power.

=> Practical utility for peptides or very short proteins

http://folding.stanford.edu/



3D Methods
Homology modelling vs. Threading

Sequence space

Structure space

........ Homology modelling

------- threading



Homology modeling

Based on the observation that similar sequences fold into the same (overall) structure

- HM
: " Similar structures
[ Different structures
2.4
100
. z
[ c
— Q
o
5 8
c 50
a g
o
3 3
o
80 150
. alignment len
0 threading g gth

For a medium-length protein, a fair threshold

% similitud
for HM is around 25% seqid.

Chothia, C. & Lesk, A.M. (1986) The relation between the divergence of sequence and structure in proteins. EMBO J., 5, 823-826.

Sander, C. & Schneider, R. (1993) The HSSP data base of protein structure-sequence alignments. Nucleic Acids Res., 21, 3105-3109.



Homology modeling — General strategy
® [ ocate template

e Generate alignment between sequences of target and template

® For backbone atoms take the coordinates of the corresponding template
atoms

® For conserved residues between target and template take the atom
coordinates for the side chains also.

® Side chains of other aa.

- Use rotamer libraries
-Take coordinates of as many as possible equivalent atoms

(CB->Cy,->..)
® Model loops (insertion/deletions)
® Optimize final structure (MD, ...)

® Evaluate model



Homology Modelling
target-template alignment

Look for solved structures with sequences

similar to our target (e.g. BLAST against PDB)

AHPLTSDFGGHTERDLHA ~ (/50! el

L Tl Tl 11l
AHTLTSEGGGHTEADVHA femplate

Homology o
modelling | @ .

]

’repla’re (1Indb)

Alignment: crucial step.

The %ID target-template is the most
important a-priori indicator of the
expected quality of your model




Homology Modelling
Public servers and model repositories

There are public web servers
for modeling by homology a
given sequence, as well as
repositories of pre-generated
models

An automated comparative modelling server (ExPASy, CH)
Server using homology modelling (BioCentrum, Denmark)
Protein structure homology modeling server (San Diego, USA)

Automated system for 3D models for proteins (Cancer Research UK)

Database of Comparative
Protein Structure Models

http://pipe.rockefeller.edu/modbase

http://www.expasy.ch/swissmod/SM_3DCrunch.html



3D Methods
Homology modeling vs. Threading

........ Disefio por homologia Espacio de
secuencias
Espacio de
/ estructuras
20% 1d
Similar Different
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threading




Threading. General Strategy

Look for folds “compatible”
with the target sequence
(even if sequence identity is
very low)

Target
sequence

Put (thread) the target sequence in the structures contained in a
fold library (possible templates) and evaluate in which one it “fits
best”, scoring these target-template matches by....




Threading
Template search/scoring

- Amino-acids in similar environments as they are in known structures (pair potentials)
- Solvatation potentials.
- Matching of secondary structures (predicted — real (template)) and accessibilities

- Remote homolog detection. Using profiles, HMMs (HHPRED)

-------- Homology modl.

Sequence space

Fold recognition superfamily

superfamily

Structure space

So6ding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951-960.



Threading
Template search/scoring

lc7vA-1topA
40% ID

1c7vA-1k9uA
A Fold 2

Homology
modelling

Remote
homology
detection

+ (Fold

N . Recognition
Sequence Space IRl LTI L 9
>

lc/vA-1c3zA
12%

Pazos, F. and Sanchez-Pulido, L. (2014) Protein Superfamilies. In, eLS. John Wiley & Sons, Ltd, Chichester, DOI:
10.1002/9780470015902.a9780470025587.



Threading
Example — pair potentials

counts

-KT In (frequency of interactions)
Boltzmann principle

For a given residue pair,
count instances at different

separations

Jones, D., Taylor, W. and Thornton, J. (1992) A new approach to protein fold recognition. Nature, 358, 86-89.

Sippl, M.J. (1995) Knowledge-based potentials for proteins. Curr Opin Struct Biol, 5, 229-235.



Template-based modelling
Range of applicability and expected model quality

HM

Similar
structures

Different
threa ding - structures
150
alignment length
. 0 30 50 100
% 1d seq.
con alguna
estructura read
threadin ,
& : modelado por homologia
Remote homology modelling
nivel
. Fold ok (.
calidad modelos atomico
Detalles atomicos mal - cadenas laterales
RMSD ~1.0A - loops
RMSD ~3.5A
- diferencia en loops
Yy gaps
- movimientos de
dominios

- cambios en el backbone



Protein Structure prediction
Current (CASP) classification of methods

Protein structural )
“level” secondary - tertiary quaternary
Protein 1D 2D 3D 4[)
i NANNAN e ! SR o
representation o &3 LeY
o0 00000 a ’J N X :"V‘
— = a
AAVLYFGREDHTLLVY o >
4

econdary structure
prediction

Contact prediction

docking
with
restraints

Seco.nd.ary structure - Homology modeling
prediction - Threading

v

Newer methods are hybrid approaches, taking concepts and methods from all these

TBM FM
(whole-template based modelling) | Vs. | (free modelling)

CASP classification. For targets more than for methods



3D Methods
Fragment-based
mini-threading + Ab-initio
Rosetta

\

< PWGCVV AALWLV . . .. . ..

el
T 3

L.’ ‘. Ab-initio
- AN e >

simulacion MonteCarlo

Mini-threading of small fragments of the target
sequence (~10aa). Generation of the final model
by exploring combinations of these small fragment
models.

http://robetta.bakerlab.org/

Simons, K.T., Kooperberg, C., Huang, E. & Baker, D. (1997) Assembly of protein tertiary structures from fragments with similar local
sequences using simulated annealing and bayesian scoring functions. J Mol Biol, 268, 209-225.



3D Methods - Fragment-based - Meta-method + Ab-initio
I-TASSER

Structure assembly Structure reassembly

s

Sequences )
&

ed potentig

Lowest E structure

FFAS-3D, HHsearch,

MUSTER,
pGenTHREADER, PPAS, S
PRC, PROSPECT2, SP3, and é\
0@‘

SPARKS-X
N

Inherent reciye

REMO H-bond
optimization

Cluster centroid Final model

Template
Combination of threading fragments of (overlapping) segments of the target sequence of
different lengths. Clustering of models to look for overrepresented folds. Filtering by
different constraints and optimization (energy minimization) of the final model(s).

http://zhanglab.ccmb.med.umich.edu/I-TASSER/

J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods,

12: 7-8



3D Methods
Additional model filtering

Many approaches produce more than one alternative model. Filter then using any
available information you might have on your particular protein.

E.g.
* Distance constraints (experimental or predicted): NMR data, crosslinking,
residue co-evolution (incorporated in some methods), ...

* Functional information: function of the proposed fold, position of functional
residues in the model, ...

Proteins biannual issues on CASP (Critical assessment of protein structure prediction methods)

Juan, D., Pazos, F. and Valencia, A. Emerging methods in protein co-evolution. Nat Rev Genet 2013, 14(4):249-261.



Co-evolving positions as distance constraints

VEEQTSATEV LICENTNLTN RHIARFANGD .......... E 9BV 91 NTDCDNGNTET

VEEQTSATEV LIGKNTWLTN RHIARFANGD .......... 5BV 9T NTDCDNGNTET

VEGSTLATSV LIGANTWFTN YHVARRAARN .......... FSNI IF'FAG NRDAERNepT :

VEGITLASSV IISKDEVWTN NHVVDDADEN. ......... . .TITFNIF S NEDARFNapT Until now... Very

CRSGRYLEDL NNCENIJTMEE DORIFEVEEL .......... DSERFLEFD G NRDAERNepT ] ...

CRIQRSLEDT. NNDENINMPE DOEIPEVERL .......... DSEEFFEPVS ECDAERNapT IOW rellablllt

PTGIFIASCY VWERDTWLTN BHVVDATHED .......... FPHAlaFp SAI NQDNYPNYPN )L

.EELEIEVII NASKGYNLTN NHVINQAQEL .......... S IQLNFERAL NQDNYPNYPN ‘

PTETFIAICSY VVERDTVLTN BHVVDATHED .......... PHAlaFp SAI NQDNYPNDNY Useful (Select|ng

QEIPMcgSEV IIdkGYNWTN NHVVDNATEL .......... NVBELSFERS . NQDNYPNDNY

FRELESEVII NASKGYNWLTN NHVIDSADEL .......... TVILFERAI N DNYFNDNY

IPA=aLETEF VVETNTWFTN NHVARIFEEL .......... .NARWFNFNA KCDacDGSAT among models or
docking poses...)

but not enough to
predict 3D

s s structure.
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Gobel, U., Sander, C., Schneider, R. and Valencia, A. (1994) Correlated mutations and residue contacts in proteins, Proteins, 18, 309-317.

Olmea, O. and Valencia, A. (1997) Improving contact predictions by the combination of correlated mutations and other sources of sequence
information., Fold Des, 2, S25-S32.

Florencio Pazos, Manuela Helmer Citterich, Gabriele Ausiello and Alfonso Valencia (1997). Correlated Mutations Contain Information About
Protein-Protein Interaction. Journal of Molecular Biology. 271(4):511-523.



Correlated mutations - “New wave” methods

Evocouplings (C. Sander), DCA (M. Accuracy of predicted contacts increased
Weigt), PSICOV (D. Jones) orders of magnitude!

- Methodologies able to disentangle |:> “protein folding problem solved’,
indirect correlations according with authors. A llimited number

of reliable correlated pairs used as
-  Many more SEQUENCES constraints for MD.
Models <= 2A RMSD
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Morcos, F. et al. (2011). Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl
Acad. Sci. USA 108, E1293-E1301.

Jones, D. T., Buchan, D. W. A., Cozzetto, D. & Pontil, M. (2012). PSICOV: precise structural contact prediction using sparse inverse
covariance estimation on large multiple sequence alignments. Bioinformatics 28, 184—190.

Hopf et al. (2012). Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing. Cell. 149(7):1607-1621



Correlated mutations - “New wave” methods

Problem: They need MANY
homologous sequences. In
the order of thousands.
Available only for a limited
number of protein families

Possible solutions:
- Metagenomic sequences
- “Ala carte” re-sequencing

Structures from sequences
Protein structures are reliably predicted from nothing more than large multiple sequence alignments (13).

1 A protein sequence with unknown structure

Given a protein sequence

structure, search
databases in order to
build huge multiple

(blue) with unknown \ s
= -T‘
,§ \ 2

)

sequence alignments of ¥ ‘ b
the protein’s family. \ /
| HEN N
] H BN |
HY H°R NR N
] i Em W
25 o am
Protein sequence ‘ N
database (UniRef100) = f;:= =
M Protein sequences EY E'E EE B
from metagenomics B N ]

3 Find the 3D contacts
Using a statistical method, predict which of the
correlations could be due to direct contacts of the
amino acids and which ones arise only indirectly from
chains of interactions.

Johannes S6ding (2017). Big-data approaches to protein structure prediction.

Science. 355(6322):248-249.
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2 Correlated mutations are found
A Certain amino acids are found to
mutate in sync, suggesting that they
might form a contact in the folded
structure.
A
A
] «— Amino acid
JNE EEN
B NEFN < Sequences of
10N NENNE- related proteins,
B NEEN - je,fromthe same
BNN NENE - protein family
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4 Predict the structure

A 3D structure is predicted de novo,
now knowing which residues should be
in contact with one another.




Assessment of prediction methods
CASP (bianual 94-)

¥ B & E:

MAKEFGIPAAVAGTVLNVVEAGGWVTTIVSIL
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EVALUATION

Databases
Algorithm

Also section for fully automatic servers

http://predictioncenter.org/ (CAFASP/ROLL)

Proteins biannual issues on CASP/CAFASP
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