Structure determination is an expensive and time consuming procedure
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Domain classification

Sequence similarity vs structural similarity 3.0

Similar sequences tend to fold into similar structures
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These two principles allow to build
protein models
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The challenge: to solve all the structural space
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Simple structure-based modelling

To build a 3D model two things are necessary:
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Simple structure modelling flowchart
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RMSD:
Two structures being compared can be experimental or predicted models

The root mean square deviation - 2
(RMSD) is the measure of the 2()‘1;‘ - Xy,)
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Accuracy of homology modelling is proportional to the level of pairwise sequence identity
between the protein of unknown structure and its target of known structure. For high levels
of identity, CPU time is the major constraint, for lower levels, loop regions become a
problem (and thus the quality of the model). Below 40-50% sequence identity errors in the
sequence alignment become fatal. Below 25-30% sequence identity, fold recognition
(threading) techniques have to replace (or complement) the sequence alignment
procedure.
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The first step in predicting the structure of a protein is a pairwise BLAST
search of the protein structural database (PDB).

This is important for two reasons:
» The BLAST search will find any highly similar structures and in this
case the alignment and modelling will usually be fairly easy.

* In addition a BLAST search can often give clues to the structure of
the entire protein - is it likely to have a signal peptide, trans-membrane
helices? How many domains might it have?

It is important to consider splitting the target into domains at this point. We can
predict the structures of separate domains we are not good at orienting the
domains.



Simplified structure prediction flow chart
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Lateral chains(rotamers)
Loops modeling

Evaluation of the model



Simplified structure prediction flow chart
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If no similar PDB template exists ...
If no template can be found with BLAST, the structure
prediction process is more complicated.

As a start we can use more complex sequence search methods
(PSIBLAST, FFAS, HMMs).

If these methods fail we will have to use fold recognition
methods to find a remotely related template.

If fold recognition methods fail to find a template, the protein
can still be modelled ab initio.

However, with each step the reliability of the prediction
decreases.



Fold Recognition

When fold recognition methods were first
developed it was thought that they could detect
analogous proteins — those that were
structurally similar but with no evolutionary
relationship.

In fact most of these predictions were later
shown to be homologous (have an evolutionary
relationship) once advanced sequence
comparison methods, such as PSI-BLAST, were
developed.

Fold recognition methods are used because they
allow you to find more distant templates.

Fold recognition technigues find templates that
sequence based methods cannot because they
use structural information as well as sequence
similarity to evaluate templates.

In fold recognition we are asking :
“starting from all known protein
structures, can | fit my sequence
onto them?”




Fold recognition methods have built in fold libraries

Fold recognition methods work by superimposing the target onto a database of
known 3D structures (folds) and evaluating the sequence-fold alignments.

Each method has its own non-redundant database of folds to save calculation
time.




Scoring Functions

Scoring functions for evaluating the
sequence-structure fit :

Similarity between the known and
predicted residue environments

Coincidence of real and predicted
secondary structure/accessibility

*Solvation energy
*Pair potentials

Evolutionary information (from
aligned structures and sequences)




Using Structural Environments Scores

Scoring matrices are pre-generated for the
probabilities of finding each of the twenty amino acids
in each of the environment classes. These probabilities
are calculated from databases of known structures.

Using these probabilities a 3D profile is created for
each fold in the fold library. This 3D matrix defines the
probability of finding each amino acid in each
environment class.

When the target sequence is aligned with the fold, a
score can be calculated from the pre-generated 3D
profile for each of the positions in the alignment.

The final environment score will be the sum of the
probabilities for each residue.



Solvation Energy

Solvation potential is a term used to describe the
preference of an amino acid for a specific level of residue
burial.

It is derived by comparing the frequency of occurrence of
each amino acid at a specific degree of residue burial to
the frequency of occurrence of all other amino acid types
with this degree of burial.

The degree of burial of a residue is defined as the ratio
between its solvent accessible surface area and its overall
surface area.



Pair or contact potentials -
the tendency of residues to be in contact

counts

.

Counts become propensities (frequency
at each distance separation) or
energies (Boltzmann principle, -KT In)

Make count of interacting pairs
of each residue type at different L

distance separations w




Fold Recognition Servers

3D-PSSM - www.sbg.bio.ic.ac.uk/~3dpssm/
Based on sequence profiles, solvatation potentials and secondary structure.

mGenTHREADER - www.psipred.net/

Combines profiles and sequence-structure alignments. A neural network-
based jury system calculates the final score based on solvation and pair
potentials.

RAPTOR - software.bioinformatics.uwaterloo.ca/~raptor/
Best-scoring server in CAFASP3 competition in 2002. ACE server (based
on Raptor) best FR server in CASP6. You have to ask to use it first ...

SPARKS - http://sparks.informatics.iupui.edu/
Top servers in CASP 6. Sequence, secondary structure Profiles And
Residue-level Knowledge-based Score for fold recognition




Consensus Fold Recognition

No one method can hope to correctly identify every fold.

Often the best predictions are when server predictions agree.

Human experts have recognised this, human experts usually use several
different fold recognition methods and predict folds after evaluating all the
results (not just the top hits) from a range of methods.

So why not produce an algorithm that mimics the human experts?

The first consensus server, Pcons, sent the target sequence to six
publicly available fold recognition web servers.

Predictions were structurally superimposed and evaluated for their
similarity. The best model was predicted from similarity to other
predicted models.



Consensus Fold
Recognition Servers

3D Jury - http://bioinfo.pl/meta/

3D Jury is a consensus predictor that utilizes the results of fold
recognition servers, such as FFAS, 3D-PSSM, FUGUE and
mGenTHREADER, and uses a jury system to select alignments and
templates. Models are built with Modeller.

GeneSilico - http://genesilico.pl/meta/

A gateway to various methods for protein structure prediction. Domains
are identified by HmmPfam, and there are several methods for secondary
and tertiary structure (FR) prediction. Consensus predictions are made
with the Pcons consensus server and you can also send a subset of
alignments to the FRankenstein server.

Pcons - www.sbc.su.se/~arne/pcons/
Pcons was the first consensus server for fold recognition. It has been
relaunched recently.




Ab initio and de novo protein modelling

» Rather than using previously solved structures, ab initio methods
build 3D models from physical principles such as energy functions,
or try to mimic protein folding.

» Ab initio methods work best on very small proteins. They require
vast computational resources and the physical basis of protein
structural stability and the necessary energy functions are not fully
understood.

» De novo modelling is a form of ab initio modelling that uses
protein fragments to build models that are evaluated by physical
principles and statistical properties. De novo modelling has had
some notable successes. Again this works best on smaller
proteins.



De Novo Servers

ROBETTA - http:/lrobetta.bakerlab.org/

ROBETTA makes both ab initio and template-based predictions.
It detects fragments with BLAST, FFASO3, or 3DJury and uses
fragment insertion and assembly.

FoldPRO -
http:/lIwww.igb.uci.edu/?page=tools&subPage=psss
A server that attempts to assemble fragments in a similar way to

Robetta.

I-TASSER - http://zhang.bioinformatics.ku.edu/I-TASSER/
A de novo server developed by the successful Zhang group in
Kansas — predicts small proteins, predictions take about a week.
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