Introduction to protein structure analysis and prediction

Mónica Chagoyen monica.chagoyen@cnb.csic.es Protein sequence analysis and prediction service Centro Nacional de Biotecnologia (CNB-CSIC)

24-26 October 2011

Course organization and contents

Day 1:

The protein structure universe, resources and visualization

Day 2: Structural alignment, classification and 1D prediction

Day 3: 3D structure prediction

Structural alignment

Structural alignment

Establishing equivalences between amino acid residues based on the 3D structure of two or more protein folds

No prior knowledge of what amino acids are equivalent

Rigid body superposition

Steps

1.Represent proteins A and B (backbone)

2.Rotate & translate B

3.Score the alignment

Scores

- - -

Table 1

H Hasegawa and L Holm Advances and pitfalls of protein structural alignment *Current Opinion in Structural Biology* 2009, 19:341–348

Quantification of structural similarity			
Туре	Function (maximized unless otherwise stated)	Comments	Used in
3D	$rmsd = \sqrt{\frac{\sum_{l=1}^{N_{e}} d_{l}^{2}}{N_{e}}}$	Root mean square positional deviation	Rigid and flexible aligners
3D	Maximize N _e , rmsd being a constraint	Iterative superimposition- realignment	ProSup [60], MAMMOTH [61] (final pass), CE [62] (final), LGA/GDT [56]
3D	Minimize rmsd, Ne being a constraint		LOVOalign [14]
3D	msd×100 (to be minimized)	SAS score	[11]
3D	$\frac{\text{rmsd} \times 100}{N_{\rm e} - N_{\rm gaps}} \text{if } N_{\rm e} > N_{\rm gaps}$	GSAS score	[11]
3D	$\sum_{i=1}^{N_{\rm B}} 1/(1 + (d_i/1.24\sqrt[3]{N_{\rm B}-15} - 1.8)^2)$	TM-score	TM-align, Fr-TM-align [63]
3D	1=1 3N_e	S score	SARF2 [59], MatAlign [64]
3D	$\sum_{i=1}^{N_{e}} (20/(1+{d_i}^2/5)) - 10N_{gaps}$	STRUCTAL score	STRUCTAL [65], LOVOalign [14]
3D	$\sum_{i=1}^{N_{e}} e^{-(d_{i}/4)^{2}}$	Differentiable	GASH [58], RASH [66]
3D	$\frac{\frac{l=1}{N_{e}^{2}}}{\frac{N_{e}^{2}}{N_{A}N_{B}(1+(rmsd/3)^{2})}}$	Q-score	SSM [40]
3D	$\frac{\operatorname{rmsd}+\alpha}{N_{e}\beta\gamma+10^{-5}}$ (to be minimized)	α is the number of unaligned SSEs in A, β is the contact map overlap, γ is the relative similarity of SSE pair distances	GANGSTA [13]
3D	$\sum_{\text{blocks}} \text{similarity of}$	General form optimized by	CE [62] (initial), FATCAT [41],
	$blocks + \sum_{links} link penalties$	Tiexible aligners	RAPIDO [16], PPM [6**], see note
3D	$ssap(i,j) = \sum_{m \in A} \frac{500}{\ V_{i \to m} - V_{j \to n}\ + 10}$	Dynamic programing over the	SSAP [55]

ssap matrix, where $i \in A$, $i \in B$

r.m.s.d (root mean square deviation)

Ambiguity

A single insertion (5') can lead to ambiguity in the pairwise residue alignment between the loops.

Therefore, a simple one-to-one functional equivalence between residues from different proteins may not exist.

W Pirovano, KA Feenstra, J Heringa The meaning of alignment: lessons from structural diversity BMC Bioinformatics 2008, 9:556

Software for structural alignment

Pair-wise and database searches

Dali http://ekhidna.biocenter.helsinki.fi/dali_server

CE (Combinatorial Extension) http://cl.sdsc.edu/

SSAP (CATH database) http://www.cathdb.info (select Tools)

PDBefold http://www.ebi.ac.uk/msd-srv/ssm

jFATCAT-rigid algorithm PDB www.pdb.org (all-against-all PDB, 40% sequence similarity clustering)

Multiple structure alignment

Mammoth-Mult http://ub.cbm.uam.es/software/online/mamothmult.php

MultiProt http://bioinfo3d.cs.tau.ac.il/MultiProt/

SuperPose http://wishart.biology.ualberta.ca/SuperPose/

MUSTANG (for download)

Flexible alignments

FATCAT http://fatcat.burnham.org/

RAPIDO http://webapps.embl-hamburg.de/rapido/

FlexProt http://bioinfo3d.cs.tau.ac.il/FlexProt/ (only PDB ids)

Structural classification

Topology and cartoon representation of the TIM barrel

Reviews in Computational Chemistry, Volume 22 edited by Kenny B. Lipkowitz, Thomas R. Cundari, and Valerie J. Gillet Copyright 2006 Wiley-VCH, John Wiley & Sons, Inc.

Two different topologies of four-helix bundles

Reviews in Computational Chemistry, Volume 22 edited by Kenny B. Lipkowitz, Thomas R. Cundari, and Valerie J. Gillet Copyright 2006 Wiley-VCH, John Wiley & Sons, Inc.

Barrel

Greek key

Jelly roll

Three common sandwich topologies of beta proteins

Reviews in Computational Chemistry, Volume 22 edited by Kenny B. Lipkowitz, Thomas R. Cundari, and Valerie J. Gillet Copyright 2006 Wiley-VCH, John Wiley & Sons, Inc.

Structural domains

SCOP classification

Fold: common structure (same SSEs in the same arrangement and topology)

Superfamily: probable common evolutionary origin (common structure and function despite low sequence identities)

Family: clear common evolutionary origin (by sequence identity or extremely similar structure and function)

CATH classification

Annu. Rev. Biochem. 2005. 74:867–900

Discrete or continuous?

RI Sadreyev, BH Kim and NV Grishin Discrete–continuous duality of protein structure space *Current Opinion in Structural Biology* 2009, 19:321–328 TIM-barrel homologs with deviations from canonical fold

Current Opinion in Structural Biology

RI Sadreyev, BH Kim and NV Grishin Discrete–continuous duality of protein structure space *Current Opinion in Structural Biology* 2009, 19:321–328

Prediction 1D

Prediction of secondary structure

DSSP* secondary structure elements

H = alpha helix
B = residue in isolated beta-bridge
E = extended strand, participates in beta ladder
G = 3-helix (3/10 helix)
I = 5 helix (pi helix)
T = hydrogen bonded turn
S = bend

* Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577-2637.

Most secondary structure predictors

H = helix(DSSP's H + G + I classes)E = strand(DSSP's E + B classes)C = the rest(DSSP's T + S + the rest)

First methods (70s) were based on single amino acid propensities

~ 60% accuracy

Chou PY, Fasman GD (1974). "Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins". Biochemistry 13 (2): 211–222 Table I. Assignment of Amino Acids as Formers, Breakers, and Indifferent for Helical and β-Sheet Regions in Proteins Based on P_a and P_β Values^e

	Helical residues"	Ρ.		β-Sheet residues [*]	Pp	
f	Glu(-)	1.53)		Met	1.67]	
5	Ala	1.45	H.	Val	1.65 }	Ha
	Leu	1.34		lle	1.60	
-	His(+)	1.24	•••••	Cys	1.30]	
	Met	1.20		Тут	1.29	
	Gin	1.17		Phe	1.28	
	Trp	1.14	na	Gln	1.23 }	hp
	Val	1.14		Leu	1.22	(D)
	Phe	1.12		Thr	1.20	
	Lys(+)	1.07		Ттр	1.19	
	lle	1.00	14	Ala	0.97 }	1 _p
	Asp(-)	0.98	1	Arg(+)	0.90 j	
	Thr	0.82		Gly	0.81	i _p
	Ser	0.79	i.	Asp(-)	0.80	1.50
	Arg(+)	0.79		Lys(+)	0.74)	ĺ.
	Cys	0.77)	Ser	0.72	
	Asn	0.73	۱.	His(+)	0.71	ba
	Tyr	0.61) De	Asn	0.65	
1	Pro	0.59		Pro	0.62	5
i	Gly	0.53	J 8.	Glu(-)	0.26	Be

"Chou and Fasman (1974b).

*Helical assignments: H_{α} , strong a former; h_{α} , a former; L_{α} , weak a former; i_a, a indifferent; b_{α} , a breaker; B_{α} , strong a breaker, L_{α} assignments are also given to Pro and Asp (near the N-terminal helix) as well as Arg (near the C-terminal helix).

^cβ-Sheet assignments: H_β, strong β former; h_β, β former; I_β, weak β former; i_β, β Indifferent; b_β, β breaker; B_β, strong β breaker; b_β assignment is also given to Trp (near the C-terminal β region). Second generation methods (until early 90s)

<70% accuracy

Compiled propensities for segments of adjacent residues (3-51 residues)

But, secondary structure formation is partially determined by nonlocal interactions (e.g. sheets). Local information was estimated to account for roughly 65% of the secondary structure information. Third generation methods

>70% accuracy

Multiple sequence alignments

Larger databases

More advanced algorithms

Secondary structure prediction software

- PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/
- PROF http://www.aber.ac.uk/~phiwww/prof/
- SSpro http://scratch.proteomics.ics.uci.edu/
- Porter http://distill.ucd.ie/porter/
- APSSP2 http://www.imtech.res.in/raghava/apssp2/
- SAM http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html
- YASPIN http://www.ibi.vu.nl/programs/yaspinwww/
- Jpred http://www.compbio.dundee.ac.uk/jpred/

Trasmembrane segments

M Punta, et al. Membrane protein prediction methods Methods (2007) 41:460–474

In comparison to water-soluble proteins,

IMP chains are able to sample only a limited number of folds

SCOP Class: Membrane and cell surface proteins and peptides

See http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.g.html

The number, location and cross-membrane direction of TM segments can be predicted rather accurately

Strong compositional biases imposed by the bilayer

TMHs > 15 residues, predominantly hydrophobic amino acids.

TMBs > 10 residues , alternating hydrophobic and polar amino acids

'Positive-inside rule'

regions connecting TM segments that are not translocated across the bilayer ("inside" or cytoplasmic regions) are enriched in positively charged amino acids

Early predictions of TM helical segments

4-step procedure:

(1) Derive a 'transmembrane propensity scale',

(2) Generate a plot of propensity values along the query sequence.

(3) Smooth the plot by taking the average propensity value in a window of N residues

and plot the average at the center of the window (i.e. a sliding-window average).

(4) Identify TM stretches on the smoothed plot using some propensity threshold.

Current predictions

Machine learning approaches Neural networks (NN) Hidden Markov Models (HMM) Support Vector Machines (SVM) Larger databases

Trasmembrane prediction software

Transmembrane helices

MEMSAT	http://bioinf.cs.ucl.ac.uk/psipred/
TopPred	http://bioweb.pasteur.fr/seqanal/interfaces/toppred.html
НММТОР	http://www.enzim.hu/hmmtop/
DAS	http://www.enzim.hu/DAS/DAS.html
ТМНММ	http://www.cbs.dtu.dk/services/TMHMM-2.0/
Tmpred	http://www.ch.embnet.org/software/TMPRED_form.html
MINNOU	http://minnou.cchmc.org/
Phobius	http://phobius.sbc.su.se/

Trasmembrane prediction software

Transmembrane barrels

PRED-TMBB	http://biophysics.biol.uoa.gr/PRED-TMBB/
BOMP	http://services.cbu.uib.no/tools/bomp
TMB-HUNT	http://www.bioinformatics.leeds.ac.uk
B2TMR, HMM-B2TMR PROFtmb	
ConBBPRED	http://bioinformatics.biol.uoa.gr/ConBBPRED/

Trasmembrane proteins databases

Table 1 Membrane proteins databases

Database	Description/URL
GPCRDB [29], KchannelDB and others	Several receptor databases
	http://www.receptors.org
OPM [26]	Database reporting predictions for the orientation of IMPs within the membrane
	http://opm.phar.umich.edu/
PDB_TM [94]	Database of known membrane protein structures
	http://pdbtm.enzim.hu/
MPtopo [24]	Database of experimentally determined protein topologies
	http://blanco.biomol.uci.edu/mptopo/
Stephen White's database	Database of known membrane protein structures
	http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html
PRNDS [30]	Database of porins
	http://gene.tn.nic.in/PRNDS
TCDB [28]	Transport classification database
	http://www.tcdb.org/
TMDET [27]	Web server for predicting the orientation of a query membrane protein structure
	http://www.enzim.hu/TMDET

Coiled-coils

Heptad repeat

Amphipathic helix

Coiled-coil architectures

Images: CC+ database coiledcoils.chm.bris.ac.uk/ccplus

Helical wheel projection of residues Met-1 to Arg-34 of the GCN4-pAA sequence.

Crystal structure of GCN4-pAA.

Liu J et al. PNAS 2006;103:15457-15462

Coiled coils prediction software

COILS	http://www.ch.embnet.org/software/COILS_form.html
Paircoil2	http://groups.csail.mit.edu/cb/paircoil2/
bCIPA	http://www.molbiotech.uni-freiburg.de/bCIPA/
PrOCoil	http://www.bioinf.jku.at/software/procoil/

Database

CC+ http://coiledcoils.chm.bris.ac.uk/ccplus/

A large number of naturally occurring proteins do not require a well-folded structure to fulfill their biological role

These intrinsically unstructured/disordered proteins (IUPs/IDPs) exist as ensembles of rapidly interconverting conformations, even under physiological conditions.

While some proteins appear fully disordered, many proteins are composed of both ordered and disordered regions of various lengths

It is estimated that 30–50% of eukaryotic proteins contain at least one long disordered segment

Disorder is related important regulatory functions in the cell including transcription, translation and cell signaling

Z Dosztanyi, B Meszaros and I Simon Bioinformatical approaches to characterize intrinsically disordered/unstructured proteins *Briefings in bioinformatics* (2010) 11: 225-243 Different levels of order and disorder

Two types of disorder

Permanent disordered state

Disorder-to-order transition upon binding to other macromolecules

Stathmin is an intrinsically disordered protein that forms a ternary complex with tubulin.

VN Uversky, AK Dunker Understanding protein non-folding *Biochimica et Biophysica Acta* (2010) 1231–1264

Structure comparison for the four overlapping complexes in the C-terminus of p53

Disorder prediction is based on

Basic sequence properties Amino acid composition Hydrophobicity Low complexity segments Evolutionary information Secondary structure Solvent accesibility

Disorder prediction software

Name of predictor	URL
VL-XT [72]	Not publicly available
VL3 [86]	http://www.ist.temple.edu/disprot/ Predictors.html
DisEMBL [87]	http://dis.embl.de/
DisPSSMP [69]	http://biominer.bime.ntu.edu.tw/ipda/
RONN [88]	http://www.strubi.ox.ac.uk/RONN/
DISOPRED2 [8]	http://bioinf.cs.ucl.ac.uk/disopred/ disopred.html
PrDOS [89]	http://prdos.hgc.jp/cgi-bin/top.cgi
DISpro [79]	http://scratch.proteomics.ics.uci.edu/
OnD-CRF [81]	http://babel.ucmp.umu.se/ond-crf/
DRIP-PRED [91]	http://www.sbc.su.se/~maccallr/disorder/
VSL2B [59,93]	http://www.ist.temple.edu/disprot/ Predictors.html
POODLE-I [94]	http://mbs.cbrc.jp/poodle/poodle.html
IUPred [100]	http://iupred.enzim.hu/

Databases

DisProt http://www.disprot.org/

Z Dosztanyi, B Meszaros and I Simon Bioinformatical approaches to characterize intrinsically disordered/unstructured proteins *Briefings in bioinformatics* (2010) 11: 225-243

http://www.cbs.dtu.dk/services/

Expasy proteomic tools

http://www.expasy.org/proteomics

http://csbg.cnb.csic.es/Courses/Struct_2011/

