Introduction to protein structure analysis and prediction

Mónica Chagoyen monica.chagoyen@cnb.csic.es Protein sequence analysis and prediction service Centro Nacional de Biotecnologia (CNB-CSIC)

24-26 October 2011

Course organization and contents

Day 1:

The protein structure universe, resources and visualization

Day 2:

Structural alignment, classification and 1D prediction

Day 3: 3D structure prediction

The protein universe

There are four levels of protein structure

The sequence-structure-function paradigm

LTRLDHNRAKAQI ALKLGVTSDDVKNVI I WGNHSSTQYPDVNHAKVKLQAKEVGVYEAVKDDSWLKGEFI TTVQQRGAAVI KARKLSSAM SAAKAI CDHVRDI WFGTPEGEFVSMGI I SDGNSYGVPDDLLYSFPVTI KDKTWKI VEGLPI NDFSREKMDLTAKELAEEKETAFEFLSSA

Known protein sequences

UniProt Release 2011_09 Swiss-Prot

532,146

TrEMBL 16,886,838

(redundant)

UniRef100 Release 2011_09 consists of 13,992,000 entries

Protein structures are archived in the Protein Data Bank (PDB) since 1971

www.wwpdb.org

The mission of the wwPDB is to maintain a single Protein Data Bank archive of macromolecular structural data that is freely and publicly available to the global community.

RCSB (USA)

PDBe (Europe)

PDBj (Japan)

Structural genomics

Large scale determination and analysis of three-dimensional structures

To determine by **experimental methods** a **representative set** of macromolecular structures, including medically important human proteins and proteins from important pathogens and model organisms.

To provide **models** based on sequence similarity to significantly extend the coverage of structure space.

To derive **functional information** from these structures by experimental and computational methods.

Success rate at each step towards a structure

Sequence – structure relationships

What is the chance that your "favorite" protein is in PDB?

 $\frac{3}{39} \left(\frac{1}{9} + A \right)^{13} + \frac{2}{39} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{3} +$

PDB

43,535

UniProt 13,992,000

Known structures for 0.3% of known protein sequences

Some proteins are similar due to evolutionary and/or functional reasons

Protein families and superfamilies

Proteins are composed of domains

Domain =

Structural Evolutionary Functional

unit

Usually described from

Domain organization of predicted GGDEF/EAL/PilZ domain proteins in the *Legionella pneumophila Philadelphia-1* genome

Levi, A., M. Folcher, U. Jenal, and H. A. Shuman. 2011. Cyclic diguanylate signaling proteins control intracellular growth of Legionella pneumophila. mBio 2(1):e00316-10

Structural domains

How many families?

22% of known protein sequences do not match any known domain family

M. Levitt (2009) Nature of the protein universe. Proc Acad Sci USA 106:11079

Functional coverage

Source:xfam.wordpress.com

Structural coverage

Known structures for 0.3% of known protein sequences

25% of single domain families have at least one structure solved

Expected 85% coverage by 2050

M. Levitt (2009) Nature of the protein universe. Proc Acad Sci USA 106:11079

In distantly related proteins, structure is more conserved than sequence

CA Orengo, JM Thorton. Protein families and their evolution – a structural perspective. *Annu. Rev. Biochem.* 2005.74:867-900

Structure – function relationships

Structure space has a core of high functional diversity

M Osadchy and R Kolodny Maps of protein structure space reveal a fundamental relationship between protein structure and function *Proc Nat Acad USA* 2011, 108:12301-12306 Functional diversity scale

David J. Neidhart, George L. Kenyon, John A. Gerlt & Gregory A. Petsko Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous *Nature* 347, 692 - 694 (18 October 1990); doi:10.1038/347692a0

David J. Neidhart, George L. Kenyon, John A. Gerlt & Gregory A. Petsko Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous *Nature* 347, 692 - 694 (18 October 1990); doi:10.1038/347692a0

TIM barrel functions

Nozomi Nagano, Christine A. Orengo and Janet M. Thornton

One Fold with Many Functions: The Evolutionary Relationships between TIM Barrel Families Based on their Sequences, Structures and Functions

J. Mol. Biol. (2002) 321, 741-765

P Bork, C Sander, A Valencia

Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases.

Protein Sci. 1993 Jan;2(1):31-40.

Relationships among sequence, structure and function

Structural resources

PDB sites

Other PDB portal sites

http://www.ebi.ac.uk/pdbsum

http://oca.weizmann.ac.il/oca-docs/oca-home.html

http://www.imb-jena.de/IMAGE.html

http://www.ncbi.nlm.nih.gov/sites/entrez?db=structure

PDB contents

3D atomic coordinates

Biochemical composition

Experimental process

Additional experimental data

Structure factors (X-ray crystallography)

Restraints and chemical shifts (NMR)

The PDB file

Header section

HEADER	OXIDOREDUCTASE (NAD (A) - CHOH (D)) 12-APR-89 4MDH 4N	MDH 3
COMPND	CYTOPLASMIC MALATE DEHYDROGENASE (E.C.1.1.1.37) 4N	MDH 4
SOURCE	PORCINE (SUS \$SCROFA) HEART 4N	MDH 5
AUTHOR	J.J.BIRKTOFT, L.J.BANASZAK 4N	MDH 6
REVDAT	3 15-APR-92 4MDHB 3 ATOM 4N	MDHB 1
REVDAT	2 15-JAN-90 4MDHA 1 JRNL 4N	MDHA 1
REVDAT	1 19-APR-89 4MDH 0 4N	MDH 7
SPRSDE	19-APR-89 4MDH 2MDH 4N	MDH 8
JRNL	AUTH J.J.BIRKTOFT,G.RHODES,L.J.BANASZAK 4N	MDH 9
JRNL	TITL REFINED CRYSTAL STRUCTURE OF CYTOPLASMIC MALATE 4N	mdha 2
JRNL	TITL 2 DEHYDROGENASE AT 2.5-*ANGSTROMS RESOLUTION 4N	mdha 3
JRNL	REF BIOCHEMISTRY V. 28 6065 1989 4N	MDHA 4
JRNL	REFN ASTM BICHAW US ISSN 0006-2960 033 4N	MDHA 5
REMARK	1 41	MDH 14
REMARK	1 REFERENCE 1 4M	MDH 15
REMARK	1 AUTH J.J.BIRKTOFT,Z.FU,G.E.CARNAHAN,G.RHODES, 4N	MDH 16
REMARK	1 AUTH 2 S.L.RODERICK, L.J.BANASZAK 4N	MDH 17
REMARK	1 TITL COMPARISON OF THE MOLECULAR STRUCTURES OF 4N	MDH 18
REMARK	1 TITL 2 CYTOPLASMIC AND MITOCHONDRIAL MALATE DEHYDROGENASE 4N	MDH 19
REMARK	1 REF TO BE PUBLISHED 4N	MDH 20
REMARK	1 REFN 353 4N	MDH 21

Crystallographic data

CRYST1	139.200	86.600	58.800	90.00	90.00	90.00 P	21 21	. 2	8 41	ИDН	328
ORIGX1	1.0	00000 0.0	00000 0.	000000	(0.0000			41	MDH	329
ORIGX2	0.0	00000 1.0	00000 0.	000000	(0.0000			41	MDH	330
ORIGX3	0.0	00000 0.0	00000 1.	000000	(0.0000			41	MDH	331
SCALE1	0.0	07184 0.0	00000 0.	000000	(0.0000			41	MDH	332
SCALE2	0.0	00000 0.0	11547 0.	000000	(0.0000			41	ИDН	333
SCALE3	0.0	00000 0.0	00000 0.	017007	(0.00000			41	MDH	334
MTRIX1	1 -0.8	65540 0.4	67810 -0.	178880	55	5.21400	1		41	MDH	335
MTRIX2	1 0.4	99790 0.8	29880 -0.	248020	-1	L.79900	1		41	MDH	336
MTRIX3	1 0.0	32420 -0.3	804070 -0.	952100	89	9.13300	1		41	MDH	337

(...)

Sequence

SEQRES1 A334ACESERGLUPROILEARGVALLEUVALTHRGLYALAALA4MDH163SEQRES2 A334GLYGLNILEALATYRSERLEULEUTYRSERILEGLYASN4MDH164SEQRES3 A334GLYSERVALPHEGLYLYSASPGLNPROILEILELEUVAL4MDH165

(...)

VAL GLU GLY LEU PRO ILE ASN ASP PHE SER ARG GLU LYS 334 4MDH 186 SEORES 24 A MET ASP LEU THR ALA LYS GLU LEU ALA GLU GLU LYS GLU 4MDH 187 SEORES 25 A 334 THR ALA PHE GLU PHE LEU SER SER ALA 4MDH 188 SEORES 26 A 334 ACE SER GLU PRO ILE ARG VAL LEU VAL THR GLY ALA ALA SEQRES 1 B 334 4MDH 189 SEQRES 2 B 334 GLY GLN ILE ALA TYR SER LEU LEU TYR SER ILE GLY ASN 4MDH 190 SEQRES 3 B 334 GLY SER VAL PHE GLY LYS ASP GLN PRO ILE ILE LEU VAL 4MDH 191

(...)

SEQRES24 B334VAL GLU GLY LEU PRO ILE ASN ASP PHE SER ARG GLU LYS4MDH 212SEQRES25 B334MET ASP LEU THR ALA LYS GLU LEU ALA GLU GLU LYS GLU4MDH 213SEQRES26 B334THR ALA PHE GLU PHE LEU SER SER ALA4MDH 214

(...)

Atomic coordinates

				Cha	ain							
	Atc	om io	d			XYZO	coordir	nates		B-fact	or	
ATOM	1	С	ACE	А	0	11.590	2.938	35.017	1.00	45.90	4MDHB	5
ATOM	2	0	ACE	А	0	12.581	2.371	35.517	1.00	28.75	4MDHB	6
ATOM	3	CH3	ACE	А	0	10.179	2.477	35.417	1.00	36.75	4MDHB	7
ATOM	4	Ν	SER	А	1	11.648	3.946	34.081	1.00	49.10	4MDH 3	41
ATOM	5	CA	SER	А	1	12.901	4.557	33.573	1.00	52.42	4MDH 3	42
ATOM	6	С	SER	А	1	12.733	5.624	32.482	1.00	48.48	4MDH 3	43
ATOM	7	0	SER	А	1	13.238	5.432	31.363	1.00	57.03	4MDH 3	,44
ATOM	8	СВ	SER	А	1	13.990	3.553	33.162	1.00	41.45	4MDH 3	45
ATOM	9	OG	SER	А	1	15.105	3.679	34.039	1.00	42.59	4MDH 3	46
ATOM	10	Ν	GLU	А	2	12.073	6.774	32.772	1.00	37.72	4MDH 3	,47
ATOM	11	CA	GLU	А	2	11.948	7.788	31.721	1.00	20.88	4MDH 3	48
ATOM	12	С	GLU	А	2	12.042	9.235	32.169	1.00	28.31	4MDH 3	,49
ATOM	13	0	GLU	А	2	11.285	9.654	33.030	1.00	14.56	4MDH 3	50
ATOM	14	СВ	GLU	А	2	10.925	7.482	30.621	1.00	18.66	4MDH 3	51
ATOM	15	CG	GLU	А	2	10.188	8.729	30.102	1.00	39.41	4MDH 3	52
ATOM	16	CD	GLU	А	2	8.693	8.532	30.110	1.00	55.62	4MDH 3	53
ATOM	17	OE1	GLU	А	2	7.885	9.153	29.379	1.00	55.67	4MDH 3	54
ATOM	18	OE2	GLU	А	2	8.352	7.589	30.997	1.00	68.00	4MDH 3	55

(...)

Residue

Secondary structure elements

HELIX	1	1BA	GL	ΥA		13	LEU	А		20	1	4MDH 226
HELIX	2	2BA	LΕ	υA		20	GLY	А		26	1	4MDH 227
HELIX	3	CA	ME	т А		45	ALA	Α		60	1	4MDH 228
										(.)	
SHEET	1	S1A	6	LEU	A	63	TH	RZ	A	70	0	4MDH 250
SHEET	2	S1A	6	PRO	А	34	AS	ΡŻ	A	41	1	4MDH 251
SHEET	3	S1A	6	ILE	А	4	GL	ΥŻ	A	10	1	4MDH 252
										(.)	
TURN	1	Т1	VA	L A		8 <i>I</i>	ALA	A	11			4MDH 274
TURN	2	т2	GL	ΥA	1	0 0	GLY	A	13			4MDH 275
TURN	3	ΤЗ	GL	ΥA	2	26 I	PHE	A	29)		4MDH 276
										(.)	

nescription	HET HET HET FORMUL FORMUL FORMUL	NAD SUL NAD SUL 3 4 5	A B B NAD SUL HOH	1 4 2 1 4 2 2(C21 2(O4 *471(H	4 5 4 H28 S1) 2 O1)	NAD CO- EN SULFATE NAD CO- EN SULFATE N7 O14 P2)	ZYME ZYME)			4MDH 219 4MDH 220 4MDH 221 4MDH 222 4MDH 223 4MDH 224 4MDH 225
Atomic coordinates	HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	5158 5159 5160 5161 5162 5202 5203 5204 5205 5206 5207 5208 5208	AP AO1 AO2 AO5* AC5* S O1 Q2 B O4 O O O	NAD B NAD B NAD B NAD B NAD B SO4 B SO4 B SO4 B SO4 B SO4 B SO4 B SO4 B SO4 B HOH HOH HOH	1 1 1 1 2 2 2 2 2 2 0 1 2	$\begin{array}{c} 42.\ 641\\ 43.\ 440\\ 41.\ 161\\ 43.\ 117\\ 43.\ 117\\ 44.\ 483\\ (\ldots.\\ 44.\ 842\\ 45.\ 916\\ 44.\ 065\\ 45.\ 570\\ 43.\ 834\\ 15.\ 379\\ 58.\ 861\\ 24.\ 384\\ (\ldots.\\ \end{array}$	30. 361 31. 570 30. 484 29. 802 29. 615) 24. 424 23. 890 23. 296 25. 307 25. 257 1. 907 0. 984 1. 184)	41. 284 40. 868 41. 376 42. 683 43. 002 31. 662 32. 631 30. 916 30. 620 32. 482 3. 295 17. 024 74. 398	1.00 26.73 1.00 20.69 1.00 33.73 1.00 20.55 1.00 17.23 1.00 72.77 1.00 31.43 1.00 26.35 1.00 52.53 1.00 47.91 1.00 58.12 1.00 37.58 1.00 35.92	4MDH5495 4MDH5496 4MDH5497 4MDH5498 4MDH5499 4MDH5539 4MDH5539 4MDH5540 4MDH5541 4MDH5541 4MDH5543 4MDH5543 4MDH5545 4MDH5546
CONNECTIVILY	CONECT CONECT CONECT CONECT	74 77 92 99	69 76 90 98	75 93		()			4MDH6015 4MDH6016 4MDH6017 4MDH6018

Heteroatoms

escriptio

H

Data quality

Protein structures are experimentally determined

They represent a model or explanation of experimental data

Any experiment, might have errors associated

Caution: not all structures are of equally high quality

X-ray crystallography experiment

Electron density maps are the primary result of crystallographic experiments

X-ray crystallography experiment

Atomic coordinates reflect an interpretation of the electron density

Validation & Structure Quality

EBI is an Outstation of the European Molecular Biology Laboratory.

http://www.ebi.ac.uk/pdbe/resources/educationTabContent/presentations/StructureValidation.ppt

Errors in Structures

- Completely wrong
 - •Wrong trace, incorrect fold of protein
 - •Register errors, where trace of protein is not in keeping with sequence order.
- Partial errors
 - Incorrectly built loops.
 - Wrong residues built into the structure (i.e., Proline instead of Aspartic acid).
- Bad data quality
 - Bad geometry and stereochemistry.
 - Incorrect positioning of ligands etc due to lack of experimental evidence.

FRAUD !!

Geometry and Stereocl

This is supposed to be Phenylalanine and should look

Wrong Structures: Retracted !!

RETRACTED: Structure of MsbA from Vibrio cholera: A Multidrug Resistance ABC Transporter Homolog in a Closed Conformation

Geoffrey Chang^{a, M}

^aDepartment of Molecular Biology, CB-105, The Scripps Research Institute, La Jolla, CA 92037, USA Edited by D. Rees. Available online 25 June 2003.

"were incorrect in both the hand of the structure and the topology. Thus, the biological interpretations based on the inverted models for MsbA are invalid."

Ground rules for Bioinformatics

- Don't always believe what programs tell you they're often misleading & sometimes wrong!
- Don't always believe what databases tell you they're often misleading & sometimes wrong!
- Don't always believe what lecturers tell you they're often misleading & sometimes wrong!
- In short, don't be a naive user
 - when computers are applied to biology, it is vital to understand the difference between mathematical & biological significance
 - computers do calculations quickly!

Computers don't do biology, You Do !

A Wlodawer, *et al.* Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures *FEBS Journal* (2008) 275: 1–21

minimum spacing of crystal lattice planes that still provide measurable diffraction of X-rays

Wlodawer et al. (2008) FEBS Journal 275:1-21

Resolution

R-factor and related measures

Agreement of factor amplitudes

 $\mathsf{F}_{\mathsf{obs}}$

$$R = \Sigma |F_{obs} - F_{calc}| / \Sigma F_{obs}$$

R-factor and related measures

Well-refined structures R < 20%

Atomic B-factors

The B-factor (or temperature factor) is an indicator of thermal motion about an atom.

However, it should be pointed out that the B-factor is a mix of real thermal displacement, static disorder (multiple but defined conformations) and dynamic disorder (no defined conformation), and all the overlap between these definitions.

Expressed in Å² (2-100 range)

If one sees values systematically > 40 $Å^2$, the fragment may not be well defined at all.

Stereochemical checks

Ramachandran plot

Side-chain torsion angles

Bad contacts

MolProbity Ramachandran analysis for 2act

Validation software

Procheck

http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/

WHATCHECK

http://swift.cmbi.ru.nl/gv/whatcheck/

JCSG Validation http://www.jcsg.org/scripts/prod/validation1.cgi

PDBeAnalysis http://www.ebi.ac.uk/pdbe-as/pdbevalidate/

MolProbity http://molprobity.biochem.duke.edu/

Visualization

•© 2006 •Academic Press

Molecular visualization software

DeepView - Swiss http://spdbv.vital-it.ch/

UCSF Chimera http://plato.cgl.ucsf.edu/chimera/

Jmol http://jmol.sourceforge.net/

Rasmol http://www.rasmol.org/

Pymol http://www.pymol.org/ Source code http://sourceforge.net/projects/pymol/

VMD http://www.ks.uiuc.edu/Research/vmd/

To learn more: PyMOL user manual

http://pymol.sourceforge.net/userman.pdf

http://csbg.cnb.csic.es/Courses/Struct_2011/